Approximations in Hydrodynamic Lubrication

1992 ◽  
Vol 114 (1) ◽  
pp. 14-25 ◽  
Author(s):  
R. X. Dai ◽  
Q. Dong ◽  
A. Z. Szeri

In this numerical study of the approximations that led Reynolds to the formulation of classical Lubrication Theory, we compare results from (1) the full Navier-Stokes equations, (2) a lubrication theory relative to the “natural,” i.e., bipolar, coordinate system of the geometry that neglects fluid inertia, and (3) the classical Reynolds Lubrication Theory that neglects both fluid inertia and film curvature. By applying parametric continuation techniques, we then estimate the Reynolds number range of validity of the laminar flow assumption of classical theory. The study demonstrates that both the Navier-Stokes and the “bipolar lubrication” solutions converge monotonically to results from classical Lubrication Theory, one from below and the other from above. Furthermore the oil-film force is shown to be invariant with Reynolds number in the range 0 < R < Rc for conventional journal bearing geometry, where Rc is the critical value of the Reynolds number at first bifurcation. A similar conclusion also holds for the off-diagonal components of the bearing stiffness matrix, while the diagonal components are linear in the Reynolds number, in accordance with the small perturbation theory of DiPrima and Stuart.

1990 ◽  
Vol 220 ◽  
pp. 459-484 ◽  
Author(s):  
H. M. Badr ◽  
M. Coutanceau ◽  
S. C. R. Dennis ◽  
C. Ménard

The unsteady flow past a circular cylinder which starts translating and rotating impulsively from rest in a viscous fluid is investigated both theoretically and experimentally in the Reynolds number range 103 [les ] R [les ] 104 and for rotational to translational surface speed ratios between 0.5 and 3. The theoretical study is based on numerical solutions of the two-dimensional unsteady Navier–Stokes equations while the experimental investigation is based on visualization of the flow using very fine suspended particles. The object of the study is to examine the effect of increase of rotation on the flow structure. There is excellent agreement between the numerical and experimental results for all speed ratios considered, except in the case of the highest rotation rate. Here three-dimensional effects become more pronounced in the experiments and the laminar flow breaks down, while the calculated flow starts to approach a steady state. For lower rotation rates a periodic structure of vortex evolution and shedding develops in the calculations which is repeated exactly as time advances. Another feature of the calculations is the discrepancy in the lift and drag forces at high Reynolds numbers resulting from solving the boundary-layer limit of the equations of motion rather than the full Navier–Stokes equations. Typical results are given for selected values of the Reynolds number and rotation rate.


2006 ◽  
Vol 128 (4) ◽  
pp. 573-578 ◽  
Author(s):  
Andrew L. Hazel ◽  
Matthias Heil

Motivated by the physiological problem of pulmonary airway reopening, we study the steady propagation of an air finger into a buckled elastic tube, initially filled with viscous fluid. The system is modeled using geometrically non-linear, Kirchhoff-Love shell theory, coupled to the free-surface Navier-Stokes equations. The resulting three-dimensional, fluid-structure-interaction problem is solved numerically by a fully coupled finite element method. Our study focuses on the effects of fluid inertia, which has been neglected in most previous studies. The importance of inertial forces is characterized by the ratio of the Reynolds and capillary numbers, Re∕Ca, a material parameter. Fluid inertia has a significant effect on the system’s behavior, even at relatively small values of Re∕Ca. In particular, compared to the case of zero Reynolds number, fluid inertia causes a significant increase in the pressure required to drive the air finger at a given speed.


1982 ◽  
Vol 117 ◽  
pp. 283-304 ◽  
Author(s):  
Alison Hooper ◽  
B. R. Duffy ◽  
H. K. Moffatt

It is shown that the well-known Jeffery–Hamel solution of the Navier–Stokes equations admits generalization to the case in which the viscosity μ and density ρ are arbitrary functions of the angular co-ordinate θ. When |Rα| [Lt ] 1, where R is the Reynolds number and 2α the angle of divergence of the planes, lubrication theory is applicable; this limit is first treated in the context of flow in a channel of slowly varying width. The Jeffery–Hamel problem proper is treated in §§ 3–6, and the effect of varying the viscosity ratio λ in a two-fluid situation is studied. In § 5, results already familiar in the single-fluid context are recapitulated and reformulated in a manner that admits immediate adaptation to the two-fluid situation, and in § 6 it is shown that the singlefluid limit (λ → 1) is in a certain sense degenerate. The necessarily discontinuous behaviour of the velocity profile as the Reynolds number (based on volume flux) increases is elucidated. Finally, in § 7, some comments are made about the realizability of these flows and about instabilities to which they may be subject.


Author(s):  
S. Bhattacharyya ◽  
D. K. Maiti

Numerical study on the wake behind a square cylinder placed parallel to a wall has been made. Flow has been investigated in the laminar Reynolds number (based on the cylinder length) range. We have studied the flow field for different values of the non-dimensional gap length between cylinder and the wall. The case when the cylinder is placed on the wall has also been considered. The governing unsteady Navier-Stokes equations are discretised through the finite volume method on staggered grid system. A SIMPLER type of algorithm has been used to compute the discretised equations iteratively. Vortex shedding has been found to be influenced by the wall. Vortex shedding suppression occurs beyond a critical value of the gap length. Due to the shear, the drag experienced by the cylinder is found to increase with the reduction of gap length. The flow is found to be steady when the cylinder is placed on the wall at a range of Reynolds number.


2000 ◽  
Vol 424 ◽  
pp. 21-44 ◽  
Author(s):  
MATTHIAS HEIL

This paper investigates finite Reynolds number effects in the problem of the propagation of an air finger into a liquid-filled flexible-walled two-dimensional channel. The study is motivated by the physiological problem of pulmonary airway reopening. A fully consistent model of the fluid–structure interaction is formulated and solved numerically using coupled finite element discretizations of the free-surface Navier–Stokes equations and the Lagrangian wall equations. It is shown that for parameter values which are representative of the conditions in the lung and in typical laboratory experiments, fluid inertia plays a surprisingly important role: even for relatively modest ratios of Reynolds and capillary numbers (Re/Ca ≈ 5–10), the pressure required to drive the air finger at a given speed increases significantly compared to the zero Reynolds number case. Fluid inertia leads to significant changes in the velocity and pressure fields near the bubble tip and is responsible for a noticeable change in the wall deformation pattern ahead of the bubble. For some parameter variations (such as variations in the wall tension), finite Reynolds number effects are shown to lead to qualitative changes in the system's behaviour. Finally, the implications of the result for pulmonary airway reopening are discussed.


2016 ◽  
Vol 24 (03) ◽  
pp. 1650018 ◽  
Author(s):  
Aatif Ali Khan ◽  
Kwang-Yong Kim

Thermal and hydraulic performances of various geometric shapes of a microchannel heat sink were evaluated numerically using Navier–Stokes equations. A heat sink comprised of a [Formula: see text][Formula: see text]cm2 silicon wafer was investigated with water as the cooling fluid. The performances of seven microchannel shapes were compared at the same microchannel hydraulic diameter and the same average height of the bottom silicon substrate. The thermal resistance, friction coefficient, and Nusselt number were calculated for a Reynolds number range of 50 to 500. The results show that an inverse trapezoidal shape gives the lowest thermal resistance for a Reynolds number up to 300. The values of [Formula: see text]Re are almost similar for all the shapes because of the constant hydraulic diameter.


1984 ◽  
Vol 106 (3) ◽  
pp. 591-596 ◽  
Author(s):  
R. S. Amano

A numerical study is reported on the flow and heat transfer in the channel with two right-angled bends. The modified hybrid scheme was employed to solve the steady full Navier-Stokes equations with the energy equation. The computations were performed for different step heights created in a long channel. The local heat transfer rate along the channel wall predicted by employing the present numerical model showed good agreement with the experimental data. The behavior of the flow and the heat transfer were investigated for the range of Reynolds number between 200 and 2000 and for step height ratios H/W = 1, 2, and 3. Finally, the correlation of the average Nusselt number in such channels as a function of Reynolds number is postulated.


Author(s):  
William Denner Pires Fonseca ◽  
Rafael Rosario Da Silva ◽  
Reinaldo Marcondes Orselli ◽  
Adson Agrico De Paula ◽  
Ricardo Galdino da Silva

In this work, a numerical study of flow around an airfoil with wavy leading edge is presented at a Reynolds number of 3X106. The flow is resolved by considering the RANS (Reynolds Average Navier-Stokes)equations. The baseline geometry is based on the NACA 0021 profile. The wavy leading edge has an amplitude of 3% and wavelength of 11%, both with respect to the airfoil chord. Cases without and with wavy leadingedges are simulated and compared. Initially, studies of the numerical sensitivity with respect to the obtained results, considering aspects such as turbulence modeling and mesh refinement, are carried out as well as bycomparison with corresponding results in the literature. Numerical data such as pressure distribution, shear stress lines on the wing surface, and aerodynamics coefficients are used to describe and investigate the flowfeatures around the wavy leading airfoil. Comparisons between the straight leading edge and the wavy leading edge cases shows an increase of the maximum lift coefficient as well as stall angle for the wavy leading edge configuration. In addition, at an angle of attack near the stall, the present numerical results shows an increase of the drag coefficient with the wavy leading edge airfoil when compared with the corresponding straight leading edge case.


2011 ◽  
Vol 680 ◽  
pp. 67-79 ◽  
Author(s):  
NIKOLAY NIKITIN

The four-dimensional (4D) incompressible Navier–Stokes equations are solved numerically for the plane channel geometry. The fourth spatial coordinate is introduced formally to be homogeneous and mathematically orthogonal to the others, similar to the spanwise coordinate. Exponential growth of small 4D perturbations superimposed onto 3D turbulent solutions was observed in the Reynolds number range from Re = 4000 to Re = 10000. The growth rate of small 4D perturbations expressed in wall units was found to be λ+4D = 0.016 independent of Reynolds number. Nonlinear evolution of 4D perturbations leads either to attenuation of turbulence and relaminarization or to establishment of a self-sustained 4D turbulent solution (4D turbulent flow). Both results on flow evolution were obtained at the lowest Reynolds number, depending on the grid resolution, pointing to the proximity of Re = 4000 as the critical Reynolds number for 4D turbulence. Self-sustained 4D turbulence appeared to be less intense compared with 3D turbulence in terms of mean wall friction, which is about 55% of that predicted by the empirical Dean law for turbulent channel flow at all Reynolds numbers considered. Thus, the law of resistance of 4D turbulent channel flow can be expressed as Cf = 0.04Re−0.25.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Sign in / Sign up

Export Citation Format

Share Document