Vortex Shedding From a Square Cylinder With Ground Effect

Author(s):  
S. Bhattacharyya ◽  
D. K. Maiti

Numerical study on the wake behind a square cylinder placed parallel to a wall has been made. Flow has been investigated in the laminar Reynolds number (based on the cylinder length) range. We have studied the flow field for different values of the non-dimensional gap length between cylinder and the wall. The case when the cylinder is placed on the wall has also been considered. The governing unsteady Navier-Stokes equations are discretised through the finite volume method on staggered grid system. A SIMPLER type of algorithm has been used to compute the discretised equations iteratively. Vortex shedding has been found to be influenced by the wall. Vortex shedding suppression occurs beyond a critical value of the gap length. Due to the shear, the drag experienced by the cylinder is found to increase with the reduction of gap length. The flow is found to be steady when the cylinder is placed on the wall at a range of Reynolds number.

1997 ◽  
Vol 119 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Robert R. Hwang ◽  
Chia-Chi Yao

A numerical study has been conducted to investigate the behavior of the vortical wake created by a square cylinder placed in a laminar boundary-layer flow. The calculations are performed by solving the unsteady 2D Navier-Stokes equations with a finite-volume method. The Reynolds-number regime investigated is from 500 to 1500. Another parameter that is varied is the distance of the cylinder from the wall. The initial and subsequent development of the vortex shedding phenomenon are investigated. The presence of the wall is found to have strong effects on the properties of these vortices, as well as lift, drag, and Strouhal number.


1998 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Robert R. Hwang ◽  
Sheng-Yuh Jaw

ABSTRACTThis paper presents a numerical study on turbulent vortex shedding flows past a square cylinder. The 2D unsteady periodic shedding motion was resolved in the calculation and the superimposed turbulent fluctuations were simulated with a second-order Reynolds-stress closure model. The calculations were carried out by solving numerically the fully elliptic ensemble-averaged Navier-Stokes equations coupled with the turbulence model equations together with the two-layer approach in the treatment of the near-wall region. The performance of the computations was evaluated by comparing the numerical results with data from available experiments. Results indicate that the present study gives good agreement in the shedding frequency and mean drag as well as in some phase profiles of the mean velocity.


Author(s):  
Wei Ning ◽  
Li He

A numerical study has been carried out to investigate modelling issues on trailing edge vortex shedding. The vortex shedding from a circular cylinder and a VKI turbine blade is calculated using a 2-D unsteady multi-block Navier-Stokes solver. The unsteady stresses are calculated from the unsteady solutions. The distributions of the unsteady stresses are analysed and compared for the cylinder case and the cascade case, respectively. The time-averaged equations are then solved and the effectiveness of the “unsteady stresses” in suppressing trailing edge vortex shedding is checked. Finally, the time-independent solution produced by solving the time-averaged equations is compared with the time-averaged solution obtained by integrating the unsteady solutions. The numerical results have demonstrated that a time-independent vortex shedding solution can be achieved by solving the Navier-Stokes equations with the unsteady stresses and the time-averaged effects of the vortex shedding can be included.


Author(s):  
Alex E. Ockfen ◽  
Konstantin I. Matveev

Experimental design and optimization of innovative ground-effect transportation means is an iterative process which requires a large amount of time and resources. To avoid the large experimental expense, numerical modeling can be used to investigate Wing-in-Ground (WIG) vehicle flight. In this paper, modeling technique is applied for a two dimensional NACA 4412 airfoil in viscous flow in and out of ground effect. The numerical method consists of a steady state, incompressible, finite volume method utilizing the Spalart-Allmaras turbulence model. Grid generation and solution of the Navier-Stokes equations are completed using FLUENT 6.3. The modeling procedures are first validated against published experimental data for unbounded flow around an airfoil. Wing section aerodynamic characteristics are then studied for varying ground heights and two separate boundary conditions: fixed ground and moving ground. Ground effect calculations are compared to several previous studies, and our results are found to correlate with published aerodynamic trends in ground effect, although all studies appear to predict different magnitudes of aerodynamic forces.


1992 ◽  
Vol 236 ◽  
pp. 445-460 ◽  
Author(s):  
Yuji Ohya ◽  
Yasuharu Nakamura ◽  
Shigehira Ozono ◽  
Hideki Tsuruta ◽  
Ryuzo Nakayama

This paper describes a numerical study of the flow around flat plates with square leading and trailing edges on the basis of a finite-difference analysis of the two-dimensional Navier—Stokes equations. The chord-to-thickness ratio of a plate, d/h, ranges from 3 to 9 and the value of the Reynolds number based on the plate's thickness is constant and equal to 103. The numerical computation confirms the finding obtained in our previous experiments that vortex shedding from flat plates with square leading and trailing edges is caused by the impinging-shear-layer instability. In particular, the Strouhal number based on the plate's chord increases stepwise with increasing d/h in agreement with the experiment. Numerical analyses also provide some crucial information on the complicated vortical flow occurring near the trailing edge in conjunction with the vortex shedding mechanism. Finally, the mechanism of the impinging-shear-layer instability is discussed in the light of the experimental and numerical findings.


1997 ◽  
Vol 119 (4) ◽  
pp. 808-813 ◽  
Author(s):  
Jianfeng Zhang ◽  
Charles Dalton

This paper presents a numerical study on the interaction of a steady approach flow and the forced transverse oscillation of a circular cylinder. The two-dimensional stream-function/vorticity formulation of the Navier-Stokes equations is solved by a semi-implicit finite-difference scheme. Calculations for flows with different amplitude (a) and frequency (fc) of the oscillation of the cylinder show a strong effect of the oscillation when fc is close to fso, the vortex shedding frequency, of the stationary cylinder. Lock-on of vortex shedding, distinct flow patterns, and increase in both drag and lift coefficients from those of a stationary cylinder are observed for Reynolds number Re = 200, a/R (R is the radius of the cylinder) from 1.0 to 2.0, fc/fso from 0.85 to 1.7. For Re = 855, a/R = 0.26, a large eddy simulation model for turbulent flow is used. The results at Re = 855 and a/R = 0.26 show that lock-on has occurred for fc/fso ≥ 0.85. The behavior of the drag and lift coefficients is seen to be influenced by the lock-on phenomenon.


1992 ◽  
Vol 114 (1) ◽  
pp. 14-25 ◽  
Author(s):  
R. X. Dai ◽  
Q. Dong ◽  
A. Z. Szeri

In this numerical study of the approximations that led Reynolds to the formulation of classical Lubrication Theory, we compare results from (1) the full Navier-Stokes equations, (2) a lubrication theory relative to the “natural,” i.e., bipolar, coordinate system of the geometry that neglects fluid inertia, and (3) the classical Reynolds Lubrication Theory that neglects both fluid inertia and film curvature. By applying parametric continuation techniques, we then estimate the Reynolds number range of validity of the laminar flow assumption of classical theory. The study demonstrates that both the Navier-Stokes and the “bipolar lubrication” solutions converge monotonically to results from classical Lubrication Theory, one from below and the other from above. Furthermore the oil-film force is shown to be invariant with Reynolds number in the range 0 < R < Rc for conventional journal bearing geometry, where Rc is the critical value of the Reynolds number at first bifurcation. A similar conclusion also holds for the off-diagonal components of the bearing stiffness matrix, while the diagonal components are linear in the Reynolds number, in accordance with the small perturbation theory of DiPrima and Stuart.


Author(s):  
Waldir Terra Pinto ◽  
Marcelo Arau´jo Vitola ◽  
Carlos Antoˆnio Levi

This work presents a numerical study on the synchronization regime of a single cylinder subject to forced harmonic motion in the transverse direction of the flow. The study is carried out for a circular cylinder for Reynolds number around 500. The forced harmonic amplitude to diameter ratio is 0.22 and the forced frequency varies from 0.2 to 4.8 Hz. The Navier-Stokes equations are solved in a non-staggered grid using a sixth-order compact difference schemes to evaluate the spatial derivatives, a low-storage third-order Runge-Kutta scheme for time integration. The cylinder is represented using a feedback force methodology. The results are compared with experimental data obtained in a water tunnel. Results show clearly that synchronization phenomenon in the fundamental frequency as well as to its super and sub-harmonics.


1984 ◽  
Vol 106 (3) ◽  
pp. 591-596 ◽  
Author(s):  
R. S. Amano

A numerical study is reported on the flow and heat transfer in the channel with two right-angled bends. The modified hybrid scheme was employed to solve the steady full Navier-Stokes equations with the energy equation. The computations were performed for different step heights created in a long channel. The local heat transfer rate along the channel wall predicted by employing the present numerical model showed good agreement with the experimental data. The behavior of the flow and the heat transfer were investigated for the range of Reynolds number between 200 and 2000 and for step height ratios H/W = 1, 2, and 3. Finally, the correlation of the average Nusselt number in such channels as a function of Reynolds number is postulated.


Author(s):  
William Denner Pires Fonseca ◽  
Rafael Rosario Da Silva ◽  
Reinaldo Marcondes Orselli ◽  
Adson Agrico De Paula ◽  
Ricardo Galdino da Silva

In this work, a numerical study of flow around an airfoil with wavy leading edge is presented at a Reynolds number of 3X106. The flow is resolved by considering the RANS (Reynolds Average Navier-Stokes)equations. The baseline geometry is based on the NACA 0021 profile. The wavy leading edge has an amplitude of 3% and wavelength of 11%, both with respect to the airfoil chord. Cases without and with wavy leadingedges are simulated and compared. Initially, studies of the numerical sensitivity with respect to the obtained results, considering aspects such as turbulence modeling and mesh refinement, are carried out as well as bycomparison with corresponding results in the literature. Numerical data such as pressure distribution, shear stress lines on the wing surface, and aerodynamics coefficients are used to describe and investigate the flowfeatures around the wavy leading airfoil. Comparisons between the straight leading edge and the wavy leading edge cases shows an increase of the maximum lift coefficient as well as stall angle for the wavy leading edge configuration. In addition, at an angle of attack near the stall, the present numerical results shows an increase of the drag coefficient with the wavy leading edge airfoil when compared with the corresponding straight leading edge case.


Sign in / Sign up

Export Citation Format

Share Document