The Free Vibrations of Stiffened Drill Strings With Static Curvature

1967 ◽  
Vol 89 (1) ◽  
pp. 23-29 ◽  
Author(s):  
D. A. Frohrib ◽  
R. Plunkett

The natural frequencies of lateral vibration of a long drill string in static tension under its own weight are primarily the same as those of the equivalent catenary. These frequencies and the mode shapes are affected to a certain extent by the bending stiffness and to a greater extent by the static deflection curve due to lateral deflection of the bottom end. In this paper, the governing equations are derived and general solutions are given in an asymptotic expansion with the bending stiffness as the parameter. Specific numerical results are given in dimensionless form for the first three natural frequencies for a very wide range of horizontal tension and several appropriate values of bending stiffness for zero vertical static force at the bottom.

2021 ◽  
Author(s):  
Ishan Ali Khan

Since their discovery, immense attention has been given to carbon nanotubes (CNTs), due to their exceptional thermal, electronic and mechanical properties and, therefore, the wide range of applications in which they are, or can be potentially, employed. Hence, it is important that all the properties of carbon nanotubes are studied extensively. This thesis studies the vibrational frequencies of double-walled and triple-walled CNTs, with and without an elastic medium surrounding them, by using Finite Element Method (FEM) and Dynamic Stiffness Matrix (DSM) formulations, considering them as Euler-Bernoulli beams coupled with van der Waals interaction forces. For FEM modelling, the linear eigenvalue problem is obtained using Galerkin weighted residual approach. The natural frequencies and mode shapes are derived from eigenvalues and eigenvectors, respectively. For DSM formulation of double-walled CNTs, a nonlinear eigenvalue problem is obtained by enforcing displacement and load end conditions to the exact solution of single equation achieved by combining the coupled governing equations. The natural frequencies are obtained using Wittrick-Williams algorithm. FEM formulation is also applied to both double and triple-walled CNTs modelled as nonlocal Euler-Bernoulli beam. The natural frequencies obtained for all the cases, are in agreement with the values provided in literature.


2015 ◽  
Vol 21 (7) ◽  
pp. 948-957 ◽  
Author(s):  
Tatjana Grigorjeva

The article determines natural frequencies of vibration and the corresponding mode shapes of a suspension bridge with the varying bending stiffness of cables and examines variations that occur in these characteristics with respect to parametric changes in the bridge. A single span suspension steel footbridge with flexible cables has been selected as an initial model used for studying the dynamic characteristics of a suspension system. With the help of the finite elements (FE) method, parameter studies of the bridge model are presented in which vibration characteristics are studied as a function of structural and material parameters such as the flexural stiffness of the cable and the mass density of structural components. It has been generally found that the bending stiffness of the main cable contributes to a considerable effect on natural frequencies for this type of the suspension system. A simplified expression of predicting natural bending frequencies of the suspension bridge taking into account the bending stiffness of the cable has been developed for the application as the first step in the design process.


2021 ◽  
Author(s):  
Ishan Ali Khan

Since their discovery, immense attention has been given to carbon nanotubes (CNTs), due to their exceptional thermal, electronic and mechanical properties and, therefore, the wide range of applications in which they are, or can be potentially, employed. Hence, it is important that all the properties of carbon nanotubes are studied extensively. This thesis studies the vibrational frequencies of double-walled and triple-walled CNTs, with and without an elastic medium surrounding them, by using Finite Element Method (FEM) and Dynamic Stiffness Matrix (DSM) formulations, considering them as Euler-Bernoulli beams coupled with van der Waals interaction forces. For FEM modelling, the linear eigenvalue problem is obtained using Galerkin weighted residual approach. The natural frequencies and mode shapes are derived from eigenvalues and eigenvectors, respectively. For DSM formulation of double-walled CNTs, a nonlinear eigenvalue problem is obtained by enforcing displacement and load end conditions to the exact solution of single equation achieved by combining the coupled governing equations. The natural frequencies are obtained using Wittrick-Williams algorithm. FEM formulation is also applied to both double and triple-walled CNTs modelled as nonlocal Euler-Bernoulli beam. The natural frequencies obtained for all the cases, are in agreement with the values provided in literature.


2020 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Fuchun Yang ◽  
Dianrui Wang

Vibration properties of high-speed rotating and revolving planet rings with discrete and partially distributed stiffnesses were studied. The governing equations were obtained by Hamilton’s principle based on a rotating frame on the ring. The governing equations were cast in matrix differential operators and discretized, using Galerkin’s method. The eigenvalue problem was dealt with state space matrix, and the natural frequencies and vibration modes were computed in a wide range of rotation speed. The properties of natural frequencies and vibration modes with rotation speed were studied for free planet rings and planet rings with discrete and partially distributed stiffnesses. The influences of several parameters on the vibration properties of planet rings were also investigated. Finally, the forced responses of planet rings resulted from the excitation of rotating and revolving movement were studied. The results show that the revolving movement not only affects the free vibration of planet rings but results in excitation to the rings. Partially distributed stiffness changes the vibration modes heavily compared to the free planet ring. Each vibration mode comprises several nodal diameter components instead of a single component for a free planet ring. The distribution area and the number of partially distributed stiffnesses mainly affect the high-order frequencies. The forced responses caused by revolving movement are nonlinear and vary with a quasi-period of rotating speed, and the responses in the regions supported by partially distributed stiffnesses are suppressed.


1990 ◽  
Vol 112 (4) ◽  
pp. 432-437 ◽  
Author(s):  
A. V. Singh ◽  
S. Mirza

Natural frequencies and mode shapes are presented for the free axisymmetric vibration of spherical shells with linearly varying thickness along the meridian. Clamped and hinged edges corresponding to opening angles 30, 45, 60 and 90 deg have been considered in this technical brief to cover a wide range from shallow to deep spherical shells. Variations in thickness are seen to have very pronounced effects on the frequencies and mode shapes.


1996 ◽  
Vol 118 (2) ◽  
pp. 141-146 ◽  
Author(s):  
S. Abrate

While many advances were made in the analysis of composite structures, it is generally recognized that the design of composite structures must be studied further in order to take full advantage of the mechanical properties of these materials. This study is concerned with maximizing the fundamental natural frequency of triangular, symmetrically laminated composite plates. The natural frequencies and mode shapes of composite plates of general triangular planform are determined using the Rayleigh-Ritz method. The plate constitutive equations are written in terms of stiffness invariants and nondimensional lamination parameters. Point supports are introduced in the formulation using the method of Lagrange multipliers. This formulation allows studying the free vibration of a wide range of triangular composite plates with any support condition along the edges and point supports. The boundary conditions are enforced at a number of points along the boundary. The effects of geometry, material properties and lamination on the natural frequencies of the plate are investigated. With this stiffness invariant formulation, the effects of lamination are described by a finite number of parameters regardless of the number of plies in the laminate. We then determine the lay-up that will maximize the fundamental natural frequency of the plate. It is shown that the optimum design is relatively insensitive to the material properties for the commonly used material systems. Results are presented for several cases.


2001 ◽  
Author(s):  
U. Yuceoglu ◽  
V. Özerciyes

Abstract This study is concerned with the “Free Vibrations of Composite Shallow Circular Cylindrical Shells or Shell Panels with a Central Stiffening Shell Strip”. The upper and lower shell elements of the stiffened composite system are considered as dissimilar, orthotropic shallow shells. The upper relatively narrow stiffening shell strip is centrally located and adhesively bonded to the lower main shell element In the theoretical formulation, a “First Order Shear Deformation Shell Theory (FSDST)” is employed. The complete set of the shallow shell dynamic equations (including the stress resultant-displacement and the constitutive equations) and the equations of the thin flexible, adhesive layer are first reduced to a set of first order system of ordinary differential equations. This final set forms the governing equations of the problem. Then, they are integrated by means of the “Modified Transfer Matrix Method”. In the adhesive layer, the “hard” and the “soft” adhesive effects are considered. It was found that the material characteristics of the adhesive layer influence the mode shapes and the corresponding natural frequencies of the composite shallow shell panel system. Additionally, some parametric studies on the natural frequencies are presented.


2019 ◽  
Vol 19 (08) ◽  
pp. 1950084 ◽  
Author(s):  
Joon Kyu Lee ◽  
Byoung Koo Lee

This study focused on the in-plane free vibration of uniform circular arches made of axially functionally graded (AFG) materials. Based on the dynamic equilibrium of an arch element, the governing equations for the free vibration of an AFG arch are derived in this study, where arbitrary functions for the Young’s modulus and mass density are acceptable. For the purpose of numerical analysis, quadratic polynomials for the Young’s modulus and mass density are considered. To calculate the natural frequencies and corresponding mode shapes, the governing equations are solved using the direct integral method enhanced by the trial eigenvalue method. For verification purposes, the predicted frequencies are compared to those obtained by the general purpose software ADINA. A parametric study of the end constraint, rotatory inertia, modular ratio, radius parameter, and subtended angle for the natural frequencies is conducted and the corresponding mode shapes are reported.


2015 ◽  
Vol 744-746 ◽  
pp. 1624-1627
Author(s):  
Li Peng ◽  
Ying Wang

This paper investigates free transverse vibrations of finite Euler–Bernoulli beams resting on viscoelastic Pasternak foundations. The differential quadrature methods (DQ) are applied directly to the governing equations of the free vibrations. Under the simple supported boundary condition, the natural frequencies of the transverse vibrations are calculated, and compared with the results of the complex mode analysis method. The numerical results obtained by using the DQ and the complex mode methods are in good agreement for the first seven order natural frequencies, but with the growth of the orders, the small quantitative differences between them increase. The effects of the foundation parameters on the natural frequencies are also studied in numerical examples.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Xiaolei Song ◽  
Haijun Liu

Abstract Bistable clamped–clamped beams have been used in a wide range of applications such as switches, resonators, energy harvesting, and vibration reduction. Most studies on this classic buckling problem focus on obtaining either the static configuration and the required critical axial load or the natural frequencies and mode shapes of postbuckling vibrations analytically. In this article, we present our study including analytical modeling and experimental method on bistable clamped–clamped beams, aiming to understand the detailed snap-through process and the ensuing vibration. In the analytical model, by decomposing the transverse deflection into static buckling configuration and linear vibration, we obtain the natural frequencies and mode shapes for the buckled beam and investigate the effects of static deflection on the symmetric and antisymmetric modes. An experimental design using noncontact methods is implemented to directly measure the response of the whole beam in the snap-through process and the sound generated by the vibrating beam. The measurements are characterized in both time and frequency domain and found to be in good agreement with the analytical model. The study presented in this article enhances the fundamental understanding of the classical problem of bistable clamped–clamped beams.


Sign in / Sign up

Export Citation Format

Share Document