Numerical Study of Laminar Natural Convection From a Plate to its Cylindrical Enclosure

1991 ◽  
Vol 113 (3) ◽  
pp. 194-199 ◽  
Author(s):  
M. M. Elshamy ◽  
M. N. Ozisik

The steady-state laminar natural convection for air bounded by a hot plate and a cold cylindrical enclosure has been studied numerically for the case of cold isothermal cylinder and hot isothermal plate. A correlation is presented for the average Nusselt number over the range of Rayleigh number from 105 to 106 for different values of the width-aspect ratio Sw and thickness aspect-ratio St of the plate. It is found that the average Nusselt number increases with increasing Sw and Rayleigh number. A two-cell pattern is observed for Sw=1.5 and less. The effect of Sw on the average Nusselt number is found to be stronger than that of St.

Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


1989 ◽  
Vol 111 (4) ◽  
pp. 916-925 ◽  
Author(s):  
V. Prasad ◽  
A. Chui

A numerical study is performed on natural convection inside a cylindrical enclosure filled with a volumetrically heated, saturated porous medium for the case when the vertical wall is isothermal and the horizontal walls are either adiabatic or isothermally cooled. When the horizontal walls are insulated, the flow in the cavity is unicellular and the temperature field in upper layers is highly stratified. However, if the top wall is cooled, there may exist a multicellular flow and an unstable thermal stratification in the upper region of the cylinder. Under the influence of weak convection, the maximum temperature in the cavity can be considerably higher than that predicted for pure conduction. The local heat flux on the bounding walls is generally a strong function of the Rayleigh number, the aspect ratio, and the wall boundary conditions. The heat removal on the cold upper surface decreases with the aspect ratio, thereby increasing the Nusselt number on the vertical wall. The effect of Rayleigh number is, however, not straightforward. Several correlations are presented for the maximum cavity temperature and the overall Nusselt number.


Author(s):  
Mohsen Izadi ◽  
Rasul Mohebbi ◽  
A. Chamkha ◽  
Ioan Pop

PurposeThe purpose of this paper is to consider natural convection of a nanofluid inside of a C-shaped cavity using Lattice Boltzmann method (LBM).Design/methodology/approachEffects of some geometry and flow parameters consisting of the aspect ratio of the cavity, aspect ratio of the heat source; Rayleigh number (Ra = 103− 106) have been investigated. The validity of the method is checked by comparing the present results with ones from the previously published work.FindingsThe results demonstrate that for Ra = 103, the aspect ratio of the heat source has more influence on the average Nusselt number in contrast to the case of Ra = 106. Contrary to the fact that the average Nusselt number increases non-linearly more than twice because of the increase of the aspect ratio of the enclosure at Ra = 103, the average Nusselt number has a linear relation with the aspect ratio for of Ra = 106. Therefore, upon increasing the Rayleigh number, the efficiency of the aspect ratio of the cavity on the thermal convection, gradually diminishes.Originality/valueThe authors believe that all the results, both numerical and asymptotic, are original and have not been published elsewhere.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Ahmed Kadari ◽  
Nord-Eddine Sad Chemloul ◽  
Said Mekroussi

Laminar natural convection in differentially heated square cavity with right cold wavy wall and horizontal conducting fin attached to its left hot wall has been investigated numerically. The vertical walls are maintained at different isothermal temperatures, while the horizontal walls are insulated. The fluid that filled the cavity is air with Prandtl number of 0.71. The investigation has been performed for Rayleigh number in the range of 103–106, the thermal conductivity ratio was varied from 10 to 105, three fin lengths and positions have been examined (0.25, 0.5, and 0.75), and three numbers of undulation were tested (one, two, and three undulations). The wave amplitude and the fin thickness were kept constant at 0.05 and 0.04, respectively. The results obtained show that increasing the fin thermal conductivity or the Rayleigh number increases the average Nusselt number especially when the fin length increases. It was also found that the fin position enhances the heat transfer when the fin is placed opposite to the crest of the wavy wall. The trend of the local Nusselt number is wavy. The effect of undulations number appears when the fin length is greater than 0.5. The average Nusselt number enhanced when a conducting fin is added to the cavity with wavy wall and without fin by 51.23% and 56.85% for one and three undulations, respectively, when the Rayleigh number is 105 and the fin length is 0.75.


2005 ◽  
Vol 128 (1) ◽  
pp. 104-109 ◽  
Author(s):  
Nawaf H. Saeid

Numerical study of natural convection flow induced by two isothermally heated elements located on adiabatic vertical plate immersed in a Darcian porous medium is carried out in the present article. The natural convection is affected by the Rayleigh number, the separation distance between the elements, their temperature ratio, and the length of the upper element. The numerical results are presented as average Nusselt number versus Rayleigh number for wide ranges of the governing parameters. It is found that the heat transfer from the lower element is not affected by the presence of the upper element for equal temperatures of the elements. The heat transfer from the lower element can be enhanced by increasing the temperature of the upper element due to the suction effect. The average Nusselt number along the upper heated element is found to increase with the increase of any of the governing parameters.


2020 ◽  
Vol 12 (4) ◽  
pp. 499-515
Author(s):  
M. Y. Arafat ◽  
F. Faisal

A numerical study has been conducted to investigate the transport mechanism of natural convection in a C-shaped enclosure filled with water-Al2O3 nanofluid for various pertinent parameters. The effects of the volume fraction of the Al2O3 nanoparticles, Rayleigh number, and radius of inserted cylindrical pins on the temperature, velocity, heat flux profiles and average Nusselt number have been investigated. General correlations for the effective thermal conductivity and viscosity of nanofluids are used for this analysis. The governing mass, momentum and energy equations are solved numerically with the finite volume method using the SIMPLER algorithm. The results show that addition of nanoparticle improves the heat transfer performance. Insertion of cylindrical pins of lower radius increases the average Nusselt number irrespective of Rayleigh number. But anomaly has been observed while pins of higher radius are inserted due to enormous disturbance in the fluid.


1970 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sumon Saha ◽  
Noman Hasan ◽  
Chowdhury Md Feroz

A numerical study has been carried out for laminar natural convection heat transfer within a two-dimensional modified square enclosure having a triangular roof. The vertical sidewalls are differentially heated considering a constant flux heat source strip is flush mounted with the left wall. The opposite wall is considered isothermal having a temperature of the surrounding fluid. The rest of the walls are adiabatic. Air is considered as the fluid inside the enclosure. The solution has been carried out on the basis of finite element analysis by a non-linear parametric solver to examine the heat transfer and fluid flow characteristics. Different heights of the triangular roof have been considered for the present analysis. Fluid flow fields and isotherm patterns and the average Nusselt number are presented for the Rayleigh numbers ranging from 103 to 106 in order to show the effects of these governing parameters. The average Nusselt number computed for the case of isoflux heating is also compared with the case of isothermal heating as available in the literature. The outcome of the present investigation shows that the convective phenomenon is greatly influenced by the inclined roof height. Keywords: Natural convection, triangular roof, Rayleigh number, isoflux heating. Doi:10.3329/jme.v39i1.1826 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 1-7


2006 ◽  
Vol 129 (6) ◽  
pp. 717-726 ◽  
Author(s):  
Kamil Kahveci

This numerical study looks at laminar natural convection in an enclosure divided by a partition with a finite thickness and conductivity. The enclosure is assumed to be heated using a uniform heat flux on a vertical wall, and cooled to a constant temperature on the opposite wall. The governing equations in the vorticity-stream function formulation are solved by employing a polynomial-based differential quadrature method. The results show that the presence of a vertical partition has a considerable effect on the circulation intensity, and therefore, the heat transfer characteristics across the enclosure. The average Nusselt number decreases with an increase of the distance between the hot wall and the partition. With a decrease in the thermal resistance of the partition, the average Nusselt number shows an increasing trend and a peak point is detected. If the thermal resistance of the partition further declines, the average Nusselt number begins to decrease asymptotically to a constant value. The partition thickness has little effect on the average Nusselt number.


Author(s):  
G. A. Sheikhzadeh ◽  
M. Pirmohammadi ◽  
M. Ghassemi

Numerical study natural convection heat transfer inside a differentially heated square cavity with adiabatic horizontal walls and vertical isothermal walls is investigated. Two perfectly conductive thin fins are attached to the isothermal walls. To solve the governing differential mass, momentum and energy equations a finite volume code based on Pantenkar’s simpler method is developed and utilized. The results are presented in form of streamlines, isotherms as well as Nusselt number for Rayleigh number ranging from 104 up to 107. It is shown that the mean Nusselt number is affected by the position of the fins and length of the fins as well as the Rayleigh number. It is also observed that maximum Nusselt number occurs about the middle of the enclosure where Lf is grater the 0.5. In addition the Nusselt number stays constant and does not varies with width of the cavity (lf) when Lf is equal to 0.5 and Rayleigh number is equal to 104 and 107 as well as when Lf is equal to 0.6 and low Rayleigh numbers.


2020 ◽  
Author(s):  
Sattar Aljobair ◽  
Akeel Abdullah Mohammed ◽  
Israa Alesbe

Abstract The natural convection heat transfer and fluid flow characteristic of water based Al2O3 nano-fluids in a symmetrical and unsymmetrical corrugated annulus enclosure has been studied numerically using CFD. The inner cylinder is heated isothermally while the outer cylinder is kept constant cold temperature. The study includes eight models of corrugated annulus enclosure with constant aspect ratio of 1.5. The governing equations of fluid motion and heat transfer are solved using stream-vorticity formulation in curvilinear coordinates. The range of solid volume fractions of nanoparticles extends from PHI=0 to 0.25, and Rayleigh number varies from 104 to 107. Streamlines, isotherms, local and average Nusselt number of inner and outer cylinder has been investigated in this study. Sixty-four correlations have been deduced for the average Nusselt number for the inner and outer cylinders as a function of Rayleigh number have been deduced for eight models and five values of volume fraction of nano particles with an accuracy range 6-12 %. The results show that, the average heat transfer rate increases significantly as particle volume fraction and Rayleigh number increase. Also, increase the number of undulations in unsymmetrical annuli reduces the heat transfer rates which remain higher than that in symmetrical annuli. There is no remarkable change in isotherms contour with increase of volume fraction of nanofluid.


Sign in / Sign up

Export Citation Format

Share Document