A Parallel Domain Decomposition BEM Algorithm for Three-Dimensional Exponentially Graded Elasticity

2008 ◽  
Vol 75 (5) ◽  
Author(s):  
J. E. Ortiz ◽  
W. A. Shelton ◽  
V. Mantič ◽  
R. Criado ◽  
L. J. Gray ◽  
...  

A parallel domain decomposition boundary integral algorithm for three-dimensional exponentially graded elasticity has been developed. As this subdomain algorithm allows the grading direction to vary in the structure, geometries arising from practical functionally graded material applications can be handled. Moreover, the boundary integral algorithm scales well with the number of processors, also helping to alleviate the high computational cost of evaluating the Green’s functions. For axisymmetric plane strain states in a radially graded material, the numerical results for cylindrical geometries are in excellent agreement with the analytical solution deduced herein.

2003 ◽  
Vol 70 (3) ◽  
pp. 359-363 ◽  
Author(s):  
S. Mukherjee ◽  
Glaucio H. Paulino

Paulino and Jin [Paulino, G. H., and Jin, Z.-H., 2001, “Correspondence Principle in Viscoelastic Functionally Graded Materials,” ASME J. Appl. Mech., 68, pp. 129–132], have recently shown that the viscoelastic correspondence principle remains valid for a linearly isotropic viscoelastic functionally graded material with separable relaxation (or creep) functions in space and time. This paper revisits this issue by addressing some subtle points regarding this result and examines the reasons behind the success or failure of the correspondence principle for viscoelastic functionally graded materials. For the inseparable class of nonhomogeneous materials, the correspondence principle fails because of an inconsistency between the replacements of the moduli and of their derivatives. A simple but informative one-dimensional example, involving an exponentially graded material, is used to further clarify these reasons.


2019 ◽  
Vol 134 ◽  
pp. 189-202 ◽  
Author(s):  
C.S. Huang ◽  
H.T. Lee ◽  
P.Y. Li ◽  
K.C. Hu ◽  
C.W. Lan ◽  
...  

2019 ◽  
Vol 31 (1) ◽  
pp. 84-99 ◽  
Author(s):  
Nguyen Van Viet ◽  
Wael Zaki ◽  
Rehan Umer ◽  
Quan Wang

A new model is proposed to describe the response of laminated composite beams consisting of one shape memory alloy layer and one functionally graded material layer. The model accounts for asymmetry in tension and compression of the shape memory alloy behavior and successfully describes the dependence of the position of the neutral surface on phase transformation within the shape memory alloy and on the load direction. Moreover, the model is capable of describing the response of the composite beam to both loading and unloading cases. In particular, the derivation of the equations governing the behavior of the beam during unloading is presented for the first time. The effect of the functionally graded material gradient index and of temperature on the neutral axis deviation and on the overall behavior of the beam is also discussed. The results obtained using the model are shown to fit three-dimensional finite element simulations of the same beam.


2019 ◽  
Vol 969 ◽  
pp. 116-121
Author(s):  
Ch. Naveen Reddy ◽  
M. Bhargav ◽  
T. Revanth

This work investigates the complete analytical solution for functionally graded material (FGM) plates incorporated with smart material. The odjective of the present work is to determine bending characteristics of piezoelectric FGM plates with different geometrical parameters, voltages and boundary conditions for electro-mechanical loading. In this work an analytical formulation based on higher order shear deformation theory (HSDT) is presented for the piezoelectric FGM plates. The solutions are obtained in closed from using Navier’s technique for piezoelectric FGM plates a specific type of simply supported boundary conditions and pc code have been developed to find out the deflections and stresses for various parameters. All the solutions are plotted against aspect proportion, side to thickness proportion as a function of material variety parameter (n) and thickness coordinate for different voltages. The significant trends from the results are obtained.


Sign in / Sign up

Export Citation Format

Share Document