Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low-Pressure Turbine Blade

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Jiahuan Cui ◽  
V. Nagabhushana Rao ◽  
Paul Tucker

Using a range of high-fidelity large eddy simulations (LES), the contrasting flow physics on the suction surface, pressure surface, and endwalls of a low-pressure turbine (LPT) blade (T106A) was studied. The current paper attempts to provide an improved understanding of the flow physics over these three zones under the influence of different inflow boundary conditions. These include: (a) the effect of wakes at low and high turbulence intensity on the flow at midspan and (b) the impact of the state of the incoming boundary layer on endwall flow features. On the suction surface, the pressure fluctuations on the aft portion significantly reduced at high freestream turbulence (FST). The instantaneous flow features revealed that this reduction at high FST (HF) is due to the dominance of “streak-based” transition over the “Kelvin–Helmholtz” (KH) based transition. Also, the transition mechanisms observed over the turbine blade were largely similar to those on a flat plate subjected to pressure gradients. On pressure surface, elongated vortices were observed at low FST (LF). The possibility of the coexistence of both the Görtler instability and the severe straining of the wakes in the formation of these elongated vortices was suggested. While this was true for the cases under low turbulence levels, the elongated vortices vanished at higher levels of background turbulence. At endwalls, the effect of the state of the incoming boundary layer on flow features has been demonstrated. The loss cores corresponding to the passage vortex and trailing shed vortex were moved farther from the endwall with a turbulent boundary layer (TBL) when compared to an incoming laminar boundary layer (LBL). Multiple horse-shoe vortices, which constantly moved toward the leading edge due to a low-frequency unstable mechanism, were captured.

Author(s):  
J. Cui ◽  
V. Nagabhushana Rao ◽  
P. G. Tucker

Using a range of high fidelity large eddy simulations, the contrasting flow physics on the suction surface, pressure surface and endwalls of a low pressure turbine blade (T106A) was studied. The current paper attempts to provide an improved understanding of the flow physics over these three zones under the influence of different inflow boundary conditions. These include: (a) the effect of wakes at low and high turbulence intensity on the flow at mid-span and (b) the impact of the state of the incoming boundary layer on endwall flow features. On the suction surface, the pressure fluctuations on the aft portion significantly reduced at high Free-Stream Turbulence (FST). The instantaneous flow features revealed that this reduction at high FST is due to the dominance of ‘streak-based’ transition over the ‘Kelvin-Helmholtz’ based transition. Also, the transition mechanisms observed over the turbine blade were largely similar to those on a flat plate subjected to pressure gradients. On pressure surface, elongated vortices were observed at low FST. The possibility of the co-existence of both the Görtler instability and the severe straining of the wakes in the formation of these elongated vortices was suggested. While this was true for the cases under low turbulence levels, the elongated vortices vanished at higher levels of background turbulence. At endwalls, the effect of the state of the incoming boundary layer on flow features has been demonstrated. The loss cores corresponding to the passage vortex and trailing shed vortex were moved farther from the endwall with a turbulent boundary layer when compared to an incoming laminar boundary layer. Multiple horse-shoe vortices, which constantly moved towards the leading edge due to a low-frequency unstable mechanism, were captured.


Author(s):  
B. O¨ztu¨rk ◽  
M. T. Schobeiri ◽  
David E. Ashpis

The paper experimentally and theoretically studies the effects of periodic unsteady wake flow and aerodynamic characteristics on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experiments were carried out at Reynolds number of 110,000 (based on suction surface length and exit velocity). For one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, intermittency behavior were experimentally and theoretically investigated. The current investigation attempts to extend the intermittency unsteady boundary layer transition model developed in previously to the LPT cases, where separation occurs on the suction surface at a low Reynolds number. The results of the unsteady boundary layer measurements and the intermittency analysis were presented in the ensemble-averaged, and contour plot forms. The analysis of the boundary layer experimental data with the flow separation, confirms the universal character of the relative intermittency function which is described by a Gausssian function.


Author(s):  
Stephen A. Pym ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
John P. Clark

Abstract Aircraft are operating at increasingly high-altitudes, where decreased air density and engine power settings have led to increasingly low Reynolds numbers in the low-pressure turbine portion of modern-day aeroengines. These operating conditions, in parallel with highly-loaded blade profiles, result in non-reattaching laminar boundary layer separation along the blade suction surface, increasing loss and decreasing engine performance. This work presents an experimental investigation into the potential for integrated leading-edge tubercles to improve blade performance in this operating regime. A turn-table cascade test-section was constructed and commissioned to test a purpose-designed, forward-loaded, low-pressure turbine blade profile at various incidences and Reynolds numbers. Baseline and tubercled blades were tested at axial chord Reynolds numbers at and between 15 000 and 60 000, and angles of incidence ranging from −5° to +10°. Experimental data collection included blade surface pressure measurements, total pressure loss in the blade wakes, hot-wire anemometry, surface hot-film measurements, and surface flow visualization using tufts. Test results showed that the implementation of tubercles did not lead to a performance enhancement. However, useful conclusions were drawn regarding the ability of tubercles to generate stream-wise vortices at ultra-low Reynolds numbers. Additional observations helped to characterize the suction surface boundary layer over the highly-loaded, low-pressure turbine blade profile when at off-design conditions. Recommendations were made for future work.


1999 ◽  
Vol 122 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C. G. Murawski ◽  
K. Vafai

An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Maria Vera ◽  
Elena de la Rosa Blanco ◽  
Howard Hodson ◽  
Raul Vazquez

Research by de la Rosa Blanco et al. (“Influence of the State of the Inlet Endwall Boundary Layer on the Interaction Between the Pressure Surface Separation and the Endwall Flows,” Proc. Inst. Mech. Eng., Part A, 217, pp. 433–441) in a linear cascade of low pressure turbine (LPT) blades has shown that the position and strength of the vortices forming the endwall flows depend on the state of the inlet endwall boundary layer, i.e., whether it is laminar or turbulent. This determines, amongst other effects, the location where the inlet boundary layer rolls up into a passage vortex, the amount of fluid that is entrained into the passage vortex, and the interaction of the vortex with the pressure side separation bubble. As a consequence, the mass-averaged stagnation pressure loss and therefore the design of a LPT depend on the state of the inlet endwall boundary layer. Unfortunately, the state of the boundary layer along the hub and casing under realistic engine conditions is not known. The results presented in this paper are taken from hot-film measurements performed on the casing of the fourth stage of the nozzle guide vanes of the cold flow affordable near term low emission (ANTLE) LPT rig. These results are compared with those from a low speed linear cascade of similar LPT blades. In the four-stage LPT rig, a transitional boundary layer has been found on the platforms upstream of the leading edge of the blades. The boundary layer is more turbulent near the leading edge of the blade and for higher Reynolds numbers. Within the passage, for both the cold flow four-stage rig and the low speed linear cascade, the new inlet boundary layer formed behind the pressure leg of the horseshoe vortex is a transitional boundary layer. The transition process progresses from the pressure to the suction surface of the passage in the direction of the secondary flow.


Author(s):  
Ralph J. Volino

Oscillating vortex generator jets have been used to control boundary layer separation from the suction side of a low-pressure turbine airfoil. A low Reynolds number (Re = 25,000) case with low free-stream turbulence has been investigated with detailed measurements including profiles of mean and fluctuating velocity and turbulent shear stress. Ensemble averaged profiles are computed for times within the jet pulsing cycle, and integral parameters and local skin friction coefficients are computed from these profiles. The jets are injected into the mainflow at a compound angle through a spanwise row of holes in the suction surface. Preliminary tests showed that the jets were effective over a wide range of frequencies and amplitudes. Detailed tests were conducted with a maximum blowing ratio of 4.7 and a dimensionless oscillation frequency of 0.65. The outward pulse from the jets in each oscillation cycle causes a disturbance to move down the airfoil surface. The leading and trailing edge celerities for the disturbance match those expected for a turbulent spot. The disturbance is followed by a calmed region. Following the calmed region, the boundary layer does separate, but the separation bubble remains very thin. Results are compared to an uncontrolled baseline case in which the boundary layer separated and did not reattach, and a case controlled passively with a rectangular bar on the suction surface. The comparison indicates that losses will be substantially lower with the jets than in the baseline or passively controlled cases.


Author(s):  
Ralph J. Volino

Boundary layer separation, transition and reattachment have been studied on a new, very high lift, low-pressure turbine airfoil. Experiments were done under low freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Velocity profiles were acquired in the suction side boundary layer at several streamwise locations using hot-wire anemometry. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) ranging from 25,000 to 330,000. In all cases the boundary layer separated, but at high Reynolds number the separation bubble remained very thin and quickly reattached after transition to turbulence. In the low Reynolds number cases, the boundary layer separated and did not reattach, even when transition occurred. This behavior contrasts with previous research on other airfoils, in which transition, if it occurred, always induced reattachment, regardless of Reynolds number.


Author(s):  
Rau´l Va´zquez ◽  
Antonio Antoranz ◽  
David Cadrecha ◽  
Leyre Arman˜anzas

This paper presents an experimental study of the flow field in an annular cascade of Low Pressure Turbine airfoils. The influence of Reynolds number, Mach number and incidence on profile and end wall losses have been investigated. The annular cascade consisted of 100 high lift, high aspect ratio, high turning blades that are characteristic of modern LP Turbines. The investigation was carried out for a wide range of Reynolds numbers, extending from 120k to 315k, exit Mach numbers, from 0.5 to 0.9, and incidences from −20 to +14 degrees. Results clearly indicate a significant effect of incidence and Mach number in secondary loss production; however, the Reynolds number shows it much weaker impact. It has also been found that the profile loss production is strongly influenced by both Reynolds and Mach numbers, being the impact of the incidence weaker. Finally, measured data suggest that, in order to properly reproduce the performance of these types of airfoils, annular cascades can be required as far as linear cascades may miss some essential flow features.


Sign in / Sign up

Export Citation Format

Share Document