Confined Swirling Flows of Aqueous Surfactant Solutions Due to a Rotating Disk in a Cylindrical Casing

2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Shinji Tamano ◽  
Motoyuki Itoh ◽  
Mitsunori Yoshida ◽  
Kazuhiko Yokota

In this study, confined swirling flows of an aqueous surfactant solution due to a rotating disk in a cylindrical casing were investigated using a sectional flow visualization technique and a two-component laser Doppler velocimetry system. The concentrations of aqueous surfactant solutions (C14TASal) are 0.4wt%, 0.8wt%, and 1.2wt%. Rheological properties such as shear viscosity and first normal stress difference of the surfactant solution were measured with a rheometer. The patterns of secondary flow were classified using the Reynolds and elasticity numbers. We revealed that the projection formed near the center of the rotating disk moved up and down at a constant frequency for C14TASal0.8wt% and 1.2wt%, which has not been reported as far as we know. The effects of the Reynolds number, elasticity number, and aspect ratio on the velocity profiles were clarified. It was also found that the region of rigid body rotation existed at the higher Reynolds number tested for C14TASal0.4wt%.

Author(s):  
S. Tamano ◽  
M. Itoh ◽  
M. Yoshida ◽  
K. Yokota

In this study, confined swirling flows of an aqueous surfactant solution due to a rotating disc in a cylindrical casing were investigated using a sectional flow visualization technique and a two-component laser Doppler velocimetry (LDV) system. The concentrations of aqueous surfactant solutions (C14TASal) are 0.4, 0.8, and 1.2 wt%. Rheological properties such as a shear viscosity and a first normal stress difference of the surfactant solution were measured with a rheometer. The patterns of the secondary flow were classified using the Reynolds and elastic numbers. We revealed that the projection formed near the center of the rotating disc was moving up and down at a constant frequency for C14TASal 0.8 and 1.2 wt%, which has not been reported as far as we know. The effects of the Reynolds number, elastic number, and aspect ratio on the velocity profiles were clarified. It was also found that the region of rigid body rotation existed at the higher Reynolds number tested for C14TASal 0.4 wt%.


2003 ◽  
Vol 2003 (0) ◽  
pp. 173
Author(s):  
Mitsunori YOSHIDA ◽  
Motoyuki ITOH ◽  
Shinzi TAMANO ◽  
Kazuhiko YOKOTA

2004 ◽  
Author(s):  
Yoshihisa Osano ◽  
Satoshi Ogata ◽  
Keizo Watanabe

To clarify the effects of surfactant solutions on the drag coefficient of a circular cylinder, the flow past a circular cylinder was investigated in the Reynolds number range of 10 to 7,000 by measuring the drag and by visualizing flow. In addition, the flow pattern was simulated numerically to examine the effect of the viscoelasticity of the surfactant solution. Six cylinders with diameters between 2 and 20 mm were tested, and the ratio of length to diameter (l/d) was 12~48. The test surfactant solutions were aqueous solutions of oleyl-methyldihydroxyethyl ammonium chloride (trade name: Ethoquad O/12) in the concentration range of 50 to 200 ppm and sodium salicylate was added as a counterion. It was clarified that the drag coefficient of surfactant solutions increases comparing with that of tap water in the Reynolds number range of 1,000 < Re 3,000 and drag reduction occurs when Re > 3,000 for a cylinder diameter of 20 mm. The maximum drag reduction ratio was approximately 55% for 200 ppm solution at Re = 7,000. The flow visualization results showed that the drag of surfactant solutions increases because of the existence of the wide stagnant zone around the cylinder. This zone disappeared in the Reynolds number range in which drag reduction occurred. In addition, the width of the wake of surfactant solutions decreases compared with that of tap water, and the Ka´rma´n vortex street is not found. These effects seem to be due to the elasticity caused by the micellar network in surfactant solution.


Author(s):  
Satoshi Ogata ◽  
Keizo Watanabe ◽  
Yoshihisa Osano

To clarify the behavior of the drag coefficient of a circular cylinder in the intermediate Reynolds number range, the flow around a circular cylinder in surfactant solutions was investigated experimentally by measurement of the drag in the Reynolds number range of 3 × 102 to 7 × 103. The experiments were performed in a vertical re-circulating water tunnel. The drag coefficient was measured using an apparatus which could measure the drag acting on the circular cylinder directly. Five cylinders of diameter d = 5, 7, 10, 13 and 20 mm were tested, the ratios of length to diameter (l/d) were 12, 24 and 48. The test surfactant solutions were aqueous solutions of Ethoquad O/12 at concentrations of 50, 100 and 200 ppm, and sodium salicylate was added as a counterion. It was clarified that the drag coefficient of the cylinder in surfactant solutions increased comparing that in tap water in the Reynolds number lower approximately 103 < Re < 3 × 103. According to the increase of the Reynolds number, the drag coefficient decreased. When Reynolds number exceeded approximately 103 < Re < 3 × 103, the drag coefficient in surfactant decreased in comparison with that in tap water finally. In other ward, the drag reduction occurred in this Reynolds number range. The maximum drag reduction was about 55% for 200 ppm solution and 20mm diameter at Re ≅ 7 × 103. The value of the drag coefficient in surfactant solutions was dependent on not only (l/d) but also cylinder diameter. The drag coefficient increased with increasing cylinder diameter. The increase in the concentration of surfactant solution emphasized the characteristics of drag reduction and drag increase.


SPE Journal ◽  
2013 ◽  
Vol 18 (05) ◽  
pp. 818-828 ◽  
Author(s):  
M. Hosein Kalaei ◽  
Don W. Green ◽  
G. Paul Willhite

Summary Wettability modification of solid rocks with surfactants is an important process and has the potential to recover oil from reservoirs. When wettability is altered by use of surfactant solutions, capillary pressure, relative permeabilities, and residual oil saturations change wherever the porous rock is contacted by the surfactant. In this study, a mechanistic model is described in which wettability alteration is simulated by a new empirical correlation of the contact angle with surfactant concentration developed from experimental data. This model was tested against results from experimental tests in which oil was displaced from oil-wet cores by imbibition of surfactant solutions. Quantitative agreement between the simulation results of oil displacement and experimental data from the literature was obtained. Simulation of the imbibition of surfactant solution in laboratory-scale cores with the new model demonstrated that wettability alteration is a dynamic process, which plays a significant role in history matching and prediction of oil recovery from oil-wet porous media. In these simulations, the gravity force was the primary cause of the surfactant-solution invasion of the core that changed the rock wettability toward a less oil-wet state.


1986 ◽  
Vol 108 (3) ◽  
pp. 540-546 ◽  
Author(s):  
H. J. Carper ◽  
J. J. Saavedra ◽  
T. Suwanprateep

Results are presented from an experimental study conducted to determine the average convective heat transfer coefficient for the side of a rotating disk, with an approximately uniform surface temperature, cooled by a single liquid jet of oil impinging normal to the surface. Tests were conducted over a range of jet flow rates, jet temperatures, jet radial positions, and disk angular velocities with various combinations of three jet nozzle and disk diameters. Correlations are presented that relate the average Nusselt number to rotational Reynolds number, jet Reynolds number, jet Prandtl number, and dimensionless jet radial position.


2001 ◽  
Author(s):  
Satoshi Ogata ◽  
Keizo Watanabe

Abstract The flow around a circular cylinder in surfactant solution was investigated experimentally by measurement of the pressure and velocity profiles in the Reynolds number range 6000 < Re < 50000. The test surfactant solutions were aqueous solutions of Ethoquad O/12 (Lion Co.) at concentrations of 50, 100 and 200 ppm, and sodium salicylate was added as a counterion. It was clarified that the pressure coefficient of surfactant solutions in the range of 10000 < Re < 50000 at the behind of the separation point was larger than that of tap water, and the separation angle increased with concentration of the surfactant solution. The velocity defect in surfactant solutions behind a circular cylinder was smaller than those in tap water. The drag coefficients of a circular cylinder in surfactant solutions were smaller than those of tap water in the range 10000 < Re < 50000, and no drag reduction occurred at Re = 6000. The drag reduction ratio increased with increasing concentration of surfactant solution. The maximum drag reduction ratio was approximately 35%.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
J. Granata ◽  
L. Xu ◽  
Z. Rusak ◽  
S. Wang

Current simulations of swirling flows in pipes are limited to relatively low Reynolds number flows (Re < 6000); however, the characteristic Reynolds number is much higher (Re > 20,000) in most of engineering applications. To address this difficulty, this paper presents a numerical simulation algorithm of the dynamics of incompressible, inviscid-limit, axisymmetric swirling flows in a pipe, including the vortex breakdown process. It is based on an explicit, first-order difference scheme in time and an upwind, second-order difference scheme in space for the time integration of the circulation and azimuthal vorticity. A second-order Poisson equation solver for the spatial integration of the stream function in terms of azimuthal vorticity is used. In addition, when reversed flow zones appear, an averaging step of properties is applied at designated time steps. This adds slight artificial viscosity to the algorithm and prevents growth of localized high-frequency numerical noise inside the breakdown zone that is related to the expected singularity that must appear in any flow simulation based on the Euler equations. Mesh refinement studies show agreement of computations for various mesh sizes. Computed examples of flow dynamics demonstrate agreement with linear and nonlinear stability theories of vortex flows in a finite-length pipe. Agreement is also found with theoretically predicted steady axisymmetric breakdown states in a pipe as flow evolves to a time-asymptotic state. These findings indicate that the present algorithm provides an accurate prediction of the inviscid-limit, axisymmetric breakdown process. Also, the numerical results support the theoretical predictions and shed light on vortex dynamics at high Re.


2006 ◽  
Vol 129 (3) ◽  
pp. 769-777 ◽  
Author(s):  
Paul Lewis ◽  
Mike Wilson ◽  
Gary Lock ◽  
J. Michael Owen

This paper compares heat transfer measurements from a preswirl rotor–stator experiment with three-dimensional (3D) steady-state results from a commercial computational fluid dynamics (CFD) code. The measured distribution of Nusselt number on the rotor surface was obtained from a scaled model of a gas turbine rotor–stator system, where the flow structure is representative of that found in an engine. Computations were carried out using a coupled multigrid Reynolds-averaged Navier-Stokes (RANS) solver with a high Reynolds number k-ε∕k-ω turbulence model. Previous work has identified three parameters governing heat transfer: rotational Reynolds number (Reϕ), preswirl ratio (βp), and the turbulent flow parameter (λT). For this study rotational Reynolds numbers are in the range 0.8×106<Reϕ<1.2×106. The turbulent flow parameter and preswirl ratios varied between 0.12<λT<0.38 and 0.5<βp<1.5, which are comparable to values that occur in industrial gas turbines. Two performance parameters have been calculated: the adiabatic effectiveness for the system, Θb,ad, and the discharge coefficient for the receiver holes, CD. The computations show that, although Θb,ad increases monotonically as βp increases, there is a critical value of βp at which CD is a maximum. At high coolant flow rates, computations have predicted peaks in heat transfer at the radius of the preswirl nozzles. These were discovered during earlier experiments and are associated with the impingement of the preswirl flow on the rotor disk. At lower flow rates, the heat transfer is controlled by boundary-layer effects. The Nusselt number on the rotating disk increases as either Reϕ or λT increases, and is axisymmetric except in the region of the receiver holes, where significant two-dimensional variations are observed. The computed velocity field is used to explain the heat transfer distributions observed in the experiments. The regions of peak heat transfer around the receiver holes are a consequence of the route taken by the flow. Two routes have been identified: “direct,” whereby flow forms a stream tube between the inlet and outlet; and “indirect,” whereby flow mixes with the rotating core of fluid.


Sign in / Sign up

Export Citation Format

Share Document