Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part II: Validation and Application

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
D. X. Wang ◽  
L. He ◽  
Y. S. Li ◽  
R. G. Wells

This is the second part of a two-part paper. First, the design-optimization system based on the adjoint gradient solution approach as described in Part I is introduced. Several test cases are studied for further validation and demonstration of the methodology and implementation. The base-line adjoint method as applied to realistic 3D configurations is demonstrated in the redesign of the NASA rotor 67 at a near-choke condition, leading to a 1.77% efficiency gain. The proposed adjoint mixing plane is applied to the redesign of a transonic compressor stage (DLR compressor stage) and an IGV-rotor-stator configuration of a Siemens industrial compressor at a single-operating point, both producing measurably positive efficiency gains. An examination on the choice of the operating mass flow condition as the basis for the performance optimization, however, highlights the limitation of the single-point approach for practical applications. For the three-row compressor configuration, a near peak-efficiency point based redesign leads to a measurable reduction in the choke mass flow, while a near-choke point based redesign leads to a significant performance drop in other flow conditions. Subsequently, a parallel multipoint approach is implemented. The results show that a two-point design optimization can produce a consistently better performance over a whole range of mass flow conditions compared with the original design. In the final case, the effectiveness of the present method and system is demonstrated by a redesign applied to a seven-row industrial compressor at the design point, leading to a remarkable 2.4% efficiency gain.

Author(s):  
A. J. Gannon ◽  
G. V. Hobson ◽  
R. P. Shreeve

The results of an experimental program to test a transonic compressor stage are presented. The stage was designed using computational fluid dynamic (CFD) techniques to minimize the use of empirical methods. The main performance characteristics of the stage are presented along with a description of the test rig. Some of the technical difficulties and solutions implemented in sustained testing of a transonic stage are outlined. Equations used to mass average the pressure and temperature ratio, to derive the isentropic efficiency and a method of measuring losses due to the case-wall are presented. Results from the experimental program for 70, 80, 90 and 100% speeds for rig open throttle to near stall are presented. Stall occurred at all speeds except 100%, where it was avoided due to rotor stress concerns. Quantitative performance maps of stage total-to-total pressure ratio and isentropic efficiency were determined. In addition, a map showing the losses due to the case-wall is presented. The total-to-total stagnation pressure and temperature profiles at the exit to the stage over the entire test range were measured and used to calculate the isentropic efficiencies. Static pressure measurements along the case-wall and hub-wall through the stage are presented. The experimental program has yielded data from a transonic compressor stage that can be used in the validation of CFD [1] codes and evaluation of the original design methods.


Author(s):  
Nishit J. Mehta ◽  
Dilipkumar Bhanudasji Alone ◽  
Harish S. Choksi

Previous studies on circumferential groove casing treatments have shown that the effectiveness of casing Grooves highly depends on their axial location over blade tip. The present work aims to study the flow behavior and its impact on the performance of the compressor stage when the casing treatment grooves are placed to provide different axial coverage over rotor chord in each case. Geometry of a transonic compressor stage was modeled for this study. Flow field solutions for this model with smooth casing wall were obtained by solving steady state 3-D Reynolds-Averaged Navier-Stokes equations for three different grids to prove the grid independence of the solutions. Results obtained with the intermediate grid density were used as the baseline results to compare with results of casing treatment geometries. The basic casing treatment geometry has 10 circumferential groves of width 4mm, depth 16mm and axial spacing of 2mm between each groove. This casing treatment geometry was superimposed over the rotor domain with the grooves extending axially over the entire axial chord (58mm) of rotor blade tip and flow field solutions were again obtained. After that, for each case the grooves are removed from the rear side and axial coverage is shortened. Flow solutions for various axial coverage and hence for various number of grooves are thus obtained and compared. These results depict improvement in the operating range when compared to the Base-line results. Results also exhibit that as the grooves from the rear end are removed gradually, recovery in the overall efficiency is seen in compressor performance. Post processing of the flow solutions confirms the trend and shows that the grooves in the rear of the chord are almost idle not providing sufficient flow to pass over from pressure surface to suction surface of the blade and hence contributing very less towards performance enhancement.


Author(s):  
Mingcong Luo ◽  
Qun Zheng ◽  
Lanxin Sun ◽  
Qingfeng Deng ◽  
Song Li ◽  
...  

The inlet fogging effects on the stable range of a NASA transonic compressor stage, Stage 35, are numerically simulated and analyzed in this paper. The 3D two-phase flow fields in the compressor stage are investigated under different operating flow conditions with varying levels of the injected water flow rates and the fogging droplets sizes. The special attention is given to the stall and the choking operating points to investigate changes in the stable operating range of the compressor stage as a result of different wet compression conditions. The preliminary results indicate that the inlet fogging has different effects on either the stall and/or the choking range. The change in the stable range of this transonic compressor stage depends on the fogging flow rate and droplets diameters.


Author(s):  
Mingcong Luo ◽  
Qun Zheng ◽  
Lanxin Sun ◽  
Qingfeng Deng ◽  
Song Li ◽  
...  

The inlet fogging effects on the stable range of a NASA transonic compressor stage, Stage 35, are numerically simulated and analyzed in this paper. The 3-D two-phase flow fields in the compressor stage are investigated under different operating flow conditions with varying levels of the injected water flow rates and the fogging droplets sizes. The special attention is given to the stall and the choking operating points to investigate changes in the stable operating range of the compressor stage as a result of different wet compression conditions. The preliminary results indicate that the inlet fogging has different effects on either the stall and/or the choking range. The change in the stable range of this transonic compressor stage depends on the fogging flowrate and droplets diameters.


Author(s):  
Lars Ellbrant ◽  
Lars-Erik Eriksson ◽  
Hans Mårtensson

The paper describes an efficient design method for highly loaded transonic compressor stages which considers a balance between efficiency at the design point and stability at part-speed. Because of the high dimensionality of the problem, two levels of model complexity are included in the design method. The first level consists of optimizing the rotor and stator profiles positioned at three streamtubes along the span. The streamtube height and radius variations are included in the computational domain and it is analyzed using a 3D RANS solver incorporating a mixing plane between the components. Due to the relatively low complexity of this quasi-3D analysis, it is fast enough to explore a large design space. With the aid of the resulting pareto-fronts, the designer can select profiles with the appropriate trade between stability and efficiency. The initial 3D compressor stage is generated based on the selected 2D profiles and the method continues to the higher complexity mode where the 3D shapes of the rotor and stator are optimized to gain further performance improvements. To verify that the design method is feasible, it is used to re-design the first compressor stage of a three-stage highly loaded transonic compressor. The compressor stage designed with the presented design method has higher part-speed stability without a compromise in the efficiency compared to the original design. This is also verified when analyzing the new design in the full compressor module.


Author(s):  
Giovanni A. Brignole ◽  
Florian C. T. Danner ◽  
Hans-Peter Kau

Building on the experience of previous investigations, a casing treatment was developed and applied to an axial transonic compressor stage, in literature referred to as Darmstadt Rotor 1. The aerodynamics of the experimental compressor stage was improved by applying axially orientated semicircular slots to the original plain casing, which both enhanced the operating range and design point efficiency. A gain in total pressure ratio along the entire design speed line was also observed. Within the scope of this study four different axial casing treatments were designed. Their effect on the flow in a transonic axial compressor stage was investigated parametrically using time-resolved 3D-FANS simulations with a mesh of approximately 4.8 · 106 grid points. This research aims to identify correlations between the geometrical cavity design and the changed channel flow. The findings help to formulate parameters for evaluating the performance of casing treatments. These criteria can further be used as target functions in the design optimisation process. The predicted behaviour of the transonic compressor was validated against experiments as well as an alternative numerical model, the non-linear harmonic method. Both confirmed the effect of the slots in raising efficiency as well as moving the design speed line towards higher pressure ratios. In the experiments, the addition of the slots increased the total pressure ratio at stall conditions by more than 5% and reduced mass flow from 87.5% of the design mass flow to less than 77.5% compared to the original geometry.


2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Jiaqi Luo ◽  
Chao Zhou ◽  
Feng Liu

This paper presents the application of a viscous adjoint method to the multipoint design optimization of a rotor blade through blade profiling. The adjoint method requires about twice the computational effort of the flow solution to obtain the complete gradient information at each operating condition, regardless of the number of design parameters. NASA Rotor 67 is redesigned through blade profiling. A single point design optimization is first performed to verify the effectiveness and feasibility of the optimization method. Then in order to improve the performance for a wide range of operating conditions, the blade is redesigned at three operating conditions: near peak efficiency, near stall, and near choke. Entropy production through the blade row combined with the constraints of mass flow rate and total pressure ratio is used as the objective function. The design results are presented in detail and the effects of blade profiling on performance improvement and shock/tip-leakage interaction are examined.


Author(s):  
Jiaqi Luo ◽  
Feng Liu ◽  
Chao Zhou

This paper presents the application of a viscous adjoint method to the multi-point design optimization of a rotor blade through blade profiling. The adjoint method requires about twice the computational effort of the flow solution to obtain the complete gradient information at each operating condition, regardless of the number of design parameters. NASA Rotor 67 is redesigned through blade profiling. A single point design optimization is first performed to verify the effectiveness and feasibility of the optimization method. Then in order to improve the performance for a wide range of operating conditions, the blade is redesigned at three operating conditions: near peak efficiency, near stall, and near choke. Entropy production through the blade row combined with the constraints of mass flow rate and total pressure ratio is used as the objective function. The design results are presented in detail and the effects of blade profiling on performance improvement and shock/tip-leakage interaction are examined.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


Sign in / Sign up

Export Citation Format

Share Document