Flow and Heat Transfer of Natural Convection in Horizontal Annulus With a Heating Element on Inner Cylinder

2009 ◽  
Vol 131 (8) ◽  
Author(s):  
C. S. Yang ◽  
D. Z. Jeng ◽  
U. H. Tang ◽  
C. Gau

Experiments have been performed to study natural convection flow and heat transfer in a horizontal annulus when a square heating element is positioned at different locations on the inner insulated cylinder. The annulus is filled with water and has cylinder to cylinder diameter ratio of 3. The square heating element is small and has the width to annulus gap width ratio of 1/6. The range of Rayleigh number studied is approximately from 1.9×106 to 3.3×107. It has been found that the flow pattern, the temperature distribution around the inner cylinder wall, and the local heat transfer rate around the outer cylinder are very sensitive to the location of the heating element. The heating element Nusselt numbers at various locations on the inner cylinder are obtained and well correlated against the Rayleigh number to the 1/3 powers. A maximum in the correlation parameter C is obtained when the heating element is placed 90 deg from the bottom.

1983 ◽  
Vol 105 (1) ◽  
pp. 108-116 ◽  
Author(s):  
J. Prusa ◽  
L. S. Yao

Laminar natural convection flow between vertically eccentric horizontal cylinders is studied numerically. The inner and outer cylinders are heated and cooled, respectively, to maintain constant surface temperatures. A physical model is introduced which accounts for the effects of fluid buoyancy as well as the eccentricity of the outer cylinder. A radial transformation is used to map the eccentric outer boundary into a concentric circle. Both eccentricity and buoyancy have a significant influence on the heat transfer and flow field of a fluid between horizontal cylinders. The effect of buoyancy, which enhances average heat transfer, increases with the Grashof number. Eccentricity influences the flow in two ways. First, by decreasing the distance between the two cylinders over part of their surfaces, it increases the local heat transfer due to conduction. Second, the eccentricity influences the connective mode of heat transfer. Results show that moderate positive values of eccentricity, enhance convective heat transfer. Results for a range of Grashof number are given, for varying eccentricity, for a radius ratio of 2.6 and a Prandtl number of 0. 706. Detailed predictions of the temperature and flow fields, and local heat transfer rates are given for representative cases. Also presented is the variation of average heat transfer rate and average shear stress with Grashof number and eccentricity. Comparisons with earlier numerical, experimental and analytic results are made.


Author(s):  
M.A. Mansour ◽  
Sameh Elsayed Ahmed ◽  
Ali J. Chamkha

Purpose This paper aims to investigate the entropy generation due to magnetohydrodynamic natural convection flow and heat transfer in a porous enclosure filled with Cu-water nanofluid in the presence of viscous dissipation effect. The left and right walls of the cavity are thermally insulated. There are heated and cold parts, and these are placed on the bottom and top wall, respectively, whereas the remaining parts are thermally insulated. Design/methodology/approach The finite volume method is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published woks is presented and is found to be in an excellent agreement. Findings The minimization of entropy generation and local heat transfer according to different values of the governing parameters are presented in details. It is found that the presence of magnetic field has negative effects on the local entropy generation because of heat transfer and the local total entropy generation. Also, the increase in the heated part length leads to a decrease in the local Nusselt number. Originality/value This problem is original, as it has not been considered previously.


2020 ◽  
Vol 25 (3) ◽  
pp. 17-29
Author(s):  
Abdelkrim Bouras ◽  
Djedid Taloub ◽  
Zied Driss

AbstractThis paper deals with numerical investigation of a natural convective flow in a horizontal annular space between a heated square inner cylinder and a cold elliptical outer cylinder with a Newtonian fluid. Uniform temperatures are imposed along walls of the enclosure. The governing equations of the problem were solved numerically by the commercial code Fluent, based on the finite volume method and the Boussinesq approximation. The effects of Geometry Ratio GR and Rayleigh numbers on fluid flow and heat transfer performance are investigated. The Rayleigh number is varied from 103 to 106. Throughout the study the relevant results are presented in terms of isotherms, and streamlines. From the results, we found that the increase in the Geometry Ratio B leads to an increase of the heat transfer coefficient. The heat transfer rate in the annulus is translated in terms of the average Nusselt numbers along the enclosure’s sides. Tecplot 7 program was used to plot the curves which cleared these relations and isotherms and streamlines which illustrate the behavior of air through the channel and its variation with other parameters. The results for the streamlines, isotherms, local and average Nusselt numbers average Nusselt numbers are compared with previous works and show good agreement.


1988 ◽  
Vol 110 (1) ◽  
pp. 116-125 ◽  
Author(s):  
P. A. Litsek ◽  
A. Bejan

The natural convection flow and heat transfer between two enclosures that communicate through a vertical opening is studied by considering the evolution of an enclosed fluid in which the left half is originally at a different temperature than the right half. Numerical experiments show that at sufficiently high Rayleigh numbers the ensuing flow is oscillatory. This and other features are anticipated on the basis of scale analysis. The time scales of the oscillation, the establishment of thermal stratification, and eventual thermal equilibrium are determined and tested numerically. At sufficiently high Rayleigh numbers the heat transfer between the communicating zones is by convection, in accordance with the constant-Stanton-number trend pointed out by Jones and Otis (1986). The range covered by the numerical experiments is 102 < Ra < 107, 0.71 < Pr < 100, and 0.25 < H/L < 1.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Basanta Kumar Rana ◽  
Bhajneet Singh ◽  
Jnana Ranjan Senapati

Abstract Numerical investigations are performed on natural and mixed convection around stationary and rotating vertical heated hollow cylinder with negligible wall thickness suspended in the air. The fluid flow and heat transfer characterization around the hollow cylinder are obtained by varying the following parameters, namely, Rayleigh number (Ra), Reynolds number (ReD), and cylindrical aspect ratio (L/D). The heat transfer quantities are estimated by varying the Rayleigh number (Ra) from 104 to 108 and aspect ratio (L/D) ranging from 1 to 20. Steady mixed convection with active rotation of hollow vertical cylinder is further studied by varying the Reynolds number (ReD) from 0 to 2100. The velocity vectors and temperature contours are shown in order to understand the fluid flow and heat transfer around the vertical hollow cylinder for both rotating and nonrotating cases. The surface average Nusselt number trends are presented for various instances of Ra, ReD, and L/D and found out that the higher rate of heat loss from the cylinder wall occurs at high Ra, low L/D (short cylinder) and high ReD.


2020 ◽  
Vol 30 (10) ◽  
pp. 4629-4648
Author(s):  
Zehba A.S. Raizah

Purpose The purpose of this study is to apply the incompressible smoothed particle hydrodynamics method for simulating the natural convection flow inside a cavity including cross blades or circular cylinder cylinder. Design/methodology/approach The base fluid is water and copper-water nanofluid is treated as a working fluid. The left and rights walls are maintained at a cool temperature, the horizontal cavity walls are isolated and the inner shape was heated. The physical parameters are the length of the blades L_Blade, the number of cross blades, circular cylinder radius L_R, Rayleigh number Ra and the nanoparticles volume fraction. Findings The results reveal that the lengths of the cross blade, number of the blades and radius of the circular cylinder is working as an enhancement factor for heat transfer and fluid flows inside a cavity. Adding nanoparticles augments heat transfer and reduces the fluid flow intensity inside a cavity. The best case for buoyancy-driven flow was obtained when the inner shape is the circular cylinder at a higher Rayleigh number. Originality/value This work uses a distinctive numerical method to study the natural convection heat from cross blades inside a cavity filled with nanofluid. It provides a new analysis of this issue and presented good results.


Author(s):  
C. Y. Shen ◽  
M. Yang ◽  
L. Li ◽  
Y. W. Zhang

The heat dissipation of current busbur in power plant is one of the important issues in power transmission, usually through the cylinder slotted to strengthen heat dissipation. Natural convection in a cylinder with an internal slotted annulus is the computational model abstracted from it. Natural convection in a cylinder with an concentric slotted annulus is concerned. Attention is focused on the effects of different slotted sizes on natural convection. Numerical results showed that, the equivalent thermal conductivity increases with the increase of Rayleigh number. At high Ra, the system heat transfer exhibit rich nonlinear characteristics. When the slotted direction or the slotted degree changed, it would have an important impact on the flow and heat transfer in the system, and also influence the related nonlinear characteristics.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Kamil Kahveci ◽  
Semiha Öztuna

Magnetohydrodynamics natural convection in an inclined enclosure with a partition is studied numerically using a differential quadrature method. Governing equations for the fluid flow and heat transfer are solved for the Rayleigh number varying from 104 to 106, the Prandtl numbers (0.1, 1, and 10), four different Hartmann numbers (0, 25, 50, and 100), the inclination angle ranging from 0degto90deg, and the magnetic field with the x and y directions. The results show that the convective flow weakens considerably with increasing magnetic field strength, and the x-directional magnetic field is more effective in reducing the convection intensity. As the inclination angle increases, multicellular flows begin to develop on both sides of the enclosure for higher values of the Hartmann number if the enclosure is under the x-directional magnetic field. The vorticity generation intensity increases with increase of Rayleigh number. On the other hand, increasing Hartmann number has a negative effect on vorticity generation. With an increase in the inclination angle, the intensity of vorticity generation is observed to shift to top left corners and bottom right corners. Vorticity generation loops in each region of enclosure form due to multicelluar flow for an x-directional magnetic field when the inclination angle is increased further. In addition, depending on the boundary layer developed, the vorticity value on the hot wall increases first sharply with increasing y and then begins to decrease gradually. For the high Rayleigh numbers, the average Nusselt number shows an increasing trend as the inclination angle increases and a peak value is detected. Beyond the peak point, the foregoing trend reverses to decrease with the further increase of the inclination angle. The results also show that the Prandtl number has only a marginal effect on the flow and heat transfer.


Sign in / Sign up

Export Citation Format

Share Document