Shear-Lag Effect in Sandwich Panels With Stiffeners Under Three-Point Bending

1980 ◽  
Vol 47 (2) ◽  
pp. 383-388 ◽  
Author(s):  
K. Kemmochi ◽  
T. Akasaka ◽  
R. Hayashi ◽  
K. Ishiwata

In this paper, a modified theory based upon Reissner’s procedure for the shear-lag effect of the sandwich panel is presented, which includes the effects of the anisotropy of the faces and the shearing rigidity of the core. In order to verify this theory, bending experiments were performed with sandwich panels composed of a soft core, stiffeners, and orthotropic faces. It was found that the effective bending rigidity calculated from this theory was lower than that derived from the classical bending theory and that the theoretical strain distribution on the faces agreed well with the experimental results.

1994 ◽  
Vol 34 (2) ◽  
pp. 100-107 ◽  
Author(s):  
H. Takayanagi ◽  
K. Kemmochi ◽  
H. Sembokuya ◽  
M. Hojo ◽  
H. Maki

2020 ◽  
Vol 11 (1) ◽  
pp. 278
Author(s):  
Ivan Hafner ◽  
Anđelko Vlašić ◽  
Tomislav Kišiček ◽  
Tvrtko Renić

Horizontal loads such as earthquake and wind are considered dominant loads for the design of tall buildings. One of the most efficient structural systems in this regard is the tube structural system. Even though such systems have a high resistance when it comes to horizontal loads, the shear lag effect that is characterized by an incomplete and uneven activation of vertical elements may cause a series of problems such as the deformation of internal panels and secondary structural elements, which cumulatively grow with the height of the building. In this paper, the shear lag effect in a typical tube structure will be observed and analyzed on a series of different numerical models. A parametric analysis will be conducted with a great number of variations in the structural elements and building layout, for the purpose of giving recommendations for an optimal design of a tube structural system.


2021 ◽  
Vol 183 ◽  
pp. 106715
Author(s):  
Eiki Yamaguchi ◽  
Naoto Kittaka ◽  
Buchit Maho ◽  
Piti Sukontasukkul

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


2015 ◽  
Vol 31 (6) ◽  
pp. 653-663 ◽  
Author(s):  
S.-W. Hu ◽  
J. Yu ◽  
Y.-Q. Huang ◽  
S.-Y. Xiao

ABSTRACTA new type of steel-concrete composite beam with double-box cross-section is proposed in this paper. In order to investigate stress behaviors and deflection characteristics of such composite beam with wide flange considering the shear lag effect, theoretical analysis and experimental study are launched simultaneously. Based on the minimum potential energy principle, governing differential equations in view of the shear lag effect are deduced by energy variational method, and analytical solutions of it's stress and deflection under the effect of symmetrical loading are calculated. The preceding analyses show that relative error is less than 14.71%, with a good agreement, and farther show that this method of theoretical derivation, which is used for analyzing shear lag effect of composite beam with wide flange, has certain reference and guidance.


2019 ◽  
Vol 181 ◽  
pp. 617-628 ◽  
Author(s):  
Yiyan Chen ◽  
Jucan Dong ◽  
Tianhua Xu ◽  
Yufeng Xiao ◽  
Ruijuan Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document