Elastic Wave Scattering From an Interface Crack in a Layered Half Space

1985 ◽  
Vol 52 (1) ◽  
pp. 42-50 ◽  
Author(s):  
H. J. Yang ◽  
D. B. Bogy

Many applications in industry utilize a layered elastic structure in which a relatively thin layer of one material is bonded to a much thicker substrate. Often the fabrication process is imperfect and cracks occur at the interface. This paper is concerned with the plane strain, time-harmonic problem of a single elastic layer of one material on a half space of a different material with a single crack at the interface. Green’s functions for the uncracked medium are used with the appropriate form of Green’s integral theorem to derive the scattered field potentials for arbitrary incident fields in the cracked layered half space. These potentials are used in turn to reduce the problem to a system of singular integral equations for determining the gradients of the crack opening displacements in the scattered field. The integral equations are analyzed to determine the crack tip singularity, which is found, in general, to be oscillatory, as it is in the corresponding static problem of an interface crack. For many material combinations of interest, however, the crack tip singularity in the stress field is one-half power, as in the case of homogeneous materials. In the numerical work presented here attention is restricted to this class of composites and the integral equations are solved numerically to determine the Mode I and Mode II stress intensity factors as a function of a dimensionless wave number for various ratios of crack length to layer depth. The results are presented in graphical form and are compared with previously published analyses for the special cases where such results are available.

1986 ◽  
Vol 53 (2) ◽  
pp. 326-332 ◽  
Author(s):  
S. M. Gracewski ◽  
D. B. Bogy

In Part I of this two-part paper, the analytical solution of time harmonic elastic wave scattering by an interface crack in a layered half space submerged in water is presented. The solution of the problem leads to a set of coupled singular integral equations for the jump in displacements across the crack. The kernels of these integrals are represented in terms of the Green’s functions for the structure without a crack. Analysis of the integral equations yields the form of the singularities of the unknown functions at the crack tip. These singularities are taken into account to arrive at an algebraic approximation for the integral equations that can then be solved numerically. Numerical results in the form of crack tip stress intensity factors are presented for the cases in which the incident disturbance is a harmonic uniform normal or shearing traction applied at the liquid-solid interface. These results are compared with a previously published solution for this problem in the absence of the liquid. In Part II, which immediately follows Part I in the same journal issue, the more realistic disturbances of plane waves and bounded beams incident from the liquid are considered.


2012 ◽  
Vol 204-208 ◽  
pp. 1170-1173
Author(s):  
Chun Bo Cheng ◽  
Man Qing Xu ◽  
Bin Xu

The dynamic response of a pile group embedded in a layered poroelastic half space subjected to axial harmonic loads is investigated in this study. Based on Biot's theory and utilizing Muki's method, the second kind of Fredholm integral equations describing the dynamic interaction between the layered half space and the pile group is constructed. Numerical results show that in a two-layered half space, for the closely populated pile group with a rigid cap, the upper softer layer thickness has considerably different influence on the center pile and the corner piles, while for sparsely populated pile group, it has almost the same influence on all the piles.


1986 ◽  
Vol 53 (2) ◽  
pp. 333-338 ◽  
Author(s):  
S. M. Gracewski ◽  
D. B. Bogy

This is Part II of a two part paper which analyzes time harmonic elastic wave scattering by an interface crack in a layered half space submerged in water. The analytic solution was derived in Part I. Also numerical results for uniform harmonic normal or shear traction applied to the liquid-solid interface were presented. These were compared with previously published results as a check on the computer program used to obtain the numerical results. Here in Part II, additional numerical results are presented. Plane waves incident from the liquid onto the solid structure are first considered to gain insight into the response characteristics of the structure. The solution for an incident beam of Gaussian profile is then presented since this profile approximates the output of an ultrasonic transducer.


2021 ◽  
Vol 3 (1) ◽  
pp. 45-50
Author(s):  
Olena Stankevych ◽  
◽  
Nazar Stankevych ◽  

The dynamic problem of the displacement field in an elastic half-space caused by the time-steady displacement of the surfaces of the system of disc-shaped coplanar cracks is solved. The solutions are obtained by the method of boundary integral equations. The dependences of elastic displacements on the surface of the half-space on the wave number, the number of defects and the depths of their occurrence are constructed.


1997 ◽  
Vol 64 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Ruichong Zhang ◽  
Liyang Zhang ◽  
Masanobu Shinozuka

Seismic wave scattering representation for the layered half-space with lateral inhomogeneities subjected to a seismic dislocation source has been formulated in the companion paper with the use of first-order perturbation (Born-type approximation) technique. The total wave field is obtained as a superposition of the mean and the scattered wave fields, which are generated, respectively, by a series of double couples of body forces equivalent to the seismic dislocation source and by fictitious body forces equivalent to the existence of the lateral inhomogeneities in the layered half-space. The responses in both the mean and the scattered wave fields are found with the aid of an integral transform technique and wave propagation analysis. The characteristics of the scattered waves and their effects on the mean waves or corresponding induced ground and/or underground mean responses are investigated in this paper. In particular, coupling phenomena between P-SV and SH waves and wave number shifting effects between the mean and the scattered wave responses are presented in detail. With the lateral inhomogeneities being assumed as a homogeneous random field, a qualitative analysis is provided for estimating the effects of the lateral inhomogeneities on the ground motion, which is related to a fundamental issue: whether a real earth medium can or cannot be approximately considered as a laterally homogeneous layer. The effects of the lateral inhomogeneities on the ground motion time history are also presented as a quantitative analysis. Finally, a numerical example is carried out for illustration purposes.


1988 ◽  
Vol 55 (4) ◽  
pp. 879-886
Author(s):  
H. A. Downey ◽  
D. B. Bogy

A rod with a lumped mass attached to its trailing end travels axially with a uniform velocity and strikes an elastic half space that is covered with an adhering viscoelastic layer. The problem is reduced to integral equations for the average contact stress and the displacement of the rod tip into the contact surface. The kernels of these integral equations are composed of temporal Green’s functions for the rod and the layered half space, which represent the response of each to an impulsive uniform normal traction. The Green’s function for the rod is obtained in closed form, while that for the layered half space is obtained through a numerical Laplace transform inversion. The integral equations are solved numerically with a second-order stable scheme. Solutions are computed for a wide variety of materials and configurations, providing the stress and displacement history, as well as the stress-displacement response. The results show the effects of changes in rod material and length, lumped mass, layer material, substrate material, and viscoelastic material parameters.


Sign in / Sign up

Export Citation Format

Share Document