A Simulation Model of a Four-Stroke Spark Ignition Engine Fueled With Landfill Gases and Hydrogen Mixtures

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Guruprasath Narayanan ◽  
S. O. Bade Shrestha

A simulation model for establishment of performance parameters of a spark ignition engine fueled with landfill gas, methane, and landfill gas-hydrogen mixtures is described. A two zone model was employed to estimate combustion duration, ignition lag, associated mass burning rates, and performance parameters for various operating conditions in an internal combustion engine. The modeling consists of two main modules: (a) a fuel-air and residual gas properties calculation, and (b) equilibrium combustion product properties calculation with 13 species of equilibrium combustion products. The fuel-air and residual gas module calculates gas properties required in compression stroke and the unburned zone of a combustion chamber. The equilibrium combustion products module calculates gas properties for the burned zone during combustion and expansion phases. In addition to engine parameters, combustion duration estimation methods were presented to accommodate the presence of high quantities of diluents such as carbon dioxide and nitrogen in methane to represent landfill gases, generally encountered in practice. Similarly, an effect of the addition of hydrogen in landfill gas on performance of a spark ignition engine was also incorporated in the model. The pressure traces and engine power output parameters were modeled and compared with the experimental observations obtained in a variable compression single cylinder four-stroke spark ignition co-operative fuel research engine for different fuels that include methane, landfill gas, and landfill gas-hydrogen mixtures and found satisfactory agreement. MATLAB was used as the programming software in the model.

Author(s):  
Guruprasath Narayanan ◽  
S. O. Bade Shrestha

A simulation model for establishment of performance parameters of a spark ignition engine fueled with landfill gas-methane and landfill gas-hydrogen mixtures is described. A two zone model was employed to estimate combustion duration, ignition lag, associated mass burning rates and performance parameters for various operating conditions in an internal combustion engine. The modeling consists of two main modules: a) a fuel-air and residual gas properties calculation, and b) equilibrium combustion product properties calculation with 13 species of equilibrium combustion products. The fuel-air and residual gas module calculates gas properties required in compression stroke and in an unburned zone of a combustion chamber. The equilibrium combustion products module calculates gas properties for the burned zone during combustion and expansion phases. In addition to engine parameters, combustion duration estimation methods were presented to accommodate the presence of high quantities of diluents such as carbon dioxide and nitrogen in methane to represent landfill gases, generally encountered in practice. Similarly, an effect of addition of hydrogen in landfill gas on performance of a spark ignition engine was also incorporated in the model. The pressure traces and other engine output parameters were modeled and compared with the experimental observations obtained in a variable compression single cylinder four-stroke spark ignition Co-operative fuel research (CFR) engine for different fuels that include methane, landfill gas and landfill gas–hydrogen mixtures and found satisfactory agreement. Matlab was used as the programming software in the model.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3773
Author(s):  
Nguyen Xuan Khoa ◽  
Ocktaeck Lim

This paper presents the effect of inlet port diameter–bore ratios (IPD/B) on the effective release energy and internal exhaust residual gas of a spark-ignition engine. To investigate the exhaust residual gas in the combustion chamber, a simulation model is setup based on AVL-boost software, and to validate the simulation model an experimental model is also setup. The results of the research show that: the IPD/B ratios have a large effect on the residual gas and effective release energy. When the IPD/B ratio increases from 0.3–0.5, the residual gas increases from 0.11% to 0.14%, and the effective release energy increases from 0.33 KJ to a maximum value of 0.45 KJ, and after that decreases. The engine shows the maximum effective release energy at IPD/B ratio is 0.4. The emission of HC and CO is decreased, but the NOx is increased until a maximum value after that decreased.


2018 ◽  
Vol 19 (6) ◽  
pp. 463-467
Author(s):  
Krystian Hennek ◽  
Mariusz Graba

Paper discussed the influence of exhaust system leakage on the utility parameters and toxic combustion products emission of a turbocharged passenger car spark ignition engine. A comparative analysis of the data gathered in the research carried out using the MAHA MSR 500 single roller chassis dynamometer was conducted, where the exhaust system was sealed and leaking in the area of the wideband oxygen sensor mounting bracket. The presented data refers to among others: the emissions of harmful gasoline oxidation products (HC, CO), the courses of power generated by the engine and the momentary values of excess air ratio. The EUDC driving cycle was used in the research.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1330 ◽  
Author(s):  
Nguyen Xuan Khoa ◽  
Ocktaeck Lim

In this research, the residual gas, peak firing pressure increase, and effective release energy were completely investigated. To obtain this target, the experimental system is installed with a dynamo system and a simulation model was setup. Through combined experimental and simulation methods, the drawbacks of the hardware optimization method were eliminated. The results of the research show that the valve port diameter-bore ratio (VPD/B) has a significant effect on the residual gas, peak firing pressure increase, and effective release energy of a four-stroke spark ignition engine. In this research, the engine was performed at 3000 rpm and full load condition. Following increased IPD/B ratio of 0.3–0.5. The intake port and exhaust port diameter has a contrary effect on engine volumetric efficiency, the residual gas ratio increase 27.3% with larger intake port and decrease 18.6% with larger exhaust port. The engine will perform optimal thermal efficiency when the trapped residual gas fraction ratio is from 13% to 14%. The maximum effective release energy was 0.45 kJ at 0.4 intake port-bore ratio, and 0.451 kJ at 0.35 exhaust port-bore ratio. The NOx emission increases until achieved a maximum value after that decrease even VPD/B was still increasing. With a VPD/B ratio of 0.35 to 0.4, the engine works without the misfiring.


2020 ◽  
Vol 45 (8) ◽  
pp. 5588-5606 ◽  
Author(s):  
Sami M.M.E. Ayad ◽  
Carlos R.P. Belchior ◽  
Gabriel L.R. da Silva ◽  
Renan S. Lucena ◽  
Edvaldo S. Carreira ◽  
...  

2016 ◽  
Vol 90 ◽  
pp. 01045 ◽  
Author(s):  
Khairil Amri Muhamad Tajuddin ◽  
Musthafah Mohd Tahir ◽  
Mohd Azli Salim ◽  
Muhd Ridzuan Mansor ◽  
Mohd Zaid Akop ◽  
...  

Author(s):  
A. V. ARUTYUNOV ◽  
◽  
A. A. BELYAEV ◽  
K. YA. TROSHIN ◽  
A. V. NIKITIN ◽  
...  

The results of experimental studies and the kinetic simulation of au- toignition of stoichiometric methane-hydrogen-air mixtures in the temperature range of 700-1000 K and pressures of 1-15 atm, relevant to the possibility of undesired autoignition (knock) in a spark-ignition engine are presented.


Author(s):  
Amir Khameneian ◽  
Xin Wang ◽  
Paul Dice ◽  
Mahdi Shahbakhti ◽  
Jefferey D. Naber ◽  
...  

Abstract The in-cylinder trapped air, residual gas, and temperature directly impact Spark Ignition (SI) engine operation and control. However, estimation of these variables dynamically is difficult. This study proposes a dynamic cycle-by-cycle model for estimation of the in-cylinder mixture temperature at different events such as Intake Valve Closed (IVC), as well as mass of trapped air and residual gas. In-cylinder, intake and exhaust pressure traces are the primary inputs to the model. The mass of trapped residual gas is affected by valve overlap increase due to the exhaust gas backflow. Of importance to engines with Variable Valve Timing (VVT), the compressible ideal-gas flow correlations were applied to predict the exhaust gas backflow into the cylinder. Furthermore, 1D GT-Power Three Pressure Analysis (TPA) was used to calibrate and validate the designed model under steady-state conditions. To minimize the calibration efforts, Design of Experiments (DOE) analysis methodology was used. The transient behavior of the model was validated using dynamometer dynamic driving cycle. The cycle-based output parameters of the developed model are in good agreement with transient experimental data with minimal delay and overshoot. The predicted parameters follow the input dynamics propagated in the in-cylinder, intake and exhaust pressure traces with a 1.5% average relative steady-state prediction error.


Sign in / Sign up

Export Citation Format

Share Document