Multiaxial Fatigue Life Predictions Under the Influence of Mean-Stresses

1988 ◽  
Vol 110 (4) ◽  
pp. 380-388 ◽  
Author(s):  
Ali Fatemi ◽  
Peter Kurath

Two materials, an Inconel 718 and a 1045 steel, are used to verify the extension of a shear strain-based parameter developed to account for out-of-phase cyclic strain hardening to multiaxial mean-stresses. Shear strain amplitude on the maximum shear strain amplitude plane and the maximum stress normal to this plane are the nominal stress-strain parameters considered in this approach. Tension-torsion and axial-internal pressure loadings using tubular specimens are employed to investigate stress-strain states that exhibit mean-strains and/or mean-stresses. Deformation response relevant to the proposed fatigue damage algorithm such as mean-stress relaxation is discussed. Adequate fatigue life correlations are obtained by implementing the proposed analysis. It is also demonstrated that methodologies successful for correlating uniaxial mean-stress data often lead to erroneous multiaxial life predictions.

Author(s):  
Sergiy Kalnaus ◽  
Yanyao Jiang

Tension-compression, torsion, and axial-torsion fatigue experiments were conducted on the AL6XN alloy to experimentally investigate the cyclic plasticity behavior and the fatigue behavior. The material is found to display significant nonproportional hardening when the equivalent plastic strain amplitude is over 2×10−4. In addition, the material exhibits overall cyclic softening. Under tension-compression, the cracking plane is perpendicular to the axial loading direction regardless of the loading amplitude. The smooth strain-life curve under fully reversed tension-compression can be described by a three-parameter power equation. However, the shear strain-life curve under pure torsion loading displays a distinct plateau in the fatigue life range approximately from 20,000 to 60,000 loading cycles. The shear strain amplitude corresponding to the plateau is approximately 1.0%. When the shear strain amplitude is above 1.0% under pure shear, the material displays shear cracking. When the shear strain amplitude is below 1.0%, the material displays tensile cracking. A transition from shear cracking to tensile cracking is associated with the plateau in the shear strain-life curve. Three different multiaxial fatigue criteria were evaluated based on the experimental results on the material for the capability of the criteria to predict fatigue life and the cracking direction. Despite the difference in theory, all the three multiaxial criteria can reasonably correlate the experiments in terms of fatigue life. Since the cracking mode of the material subjected to pure torsion is a function of the loading magnitude, the prediction of cracking orientation becomes rather challenging.


1984 ◽  
Vol 106 (3) ◽  
pp. 227-232 ◽  
Author(s):  
D. F. Socie ◽  
T. W. Shield

Biaxial fatigue tests were conducted on Inconel 718 thin-walled tubular specimens to quantify the effect of mean stress. The specimens were loaded in combined tension and torsion in strain control at room temperature. Fatigue lives ranged from 3000 to 15,000 cycles depending on the mean stress. These data were correlated with a parameter based on the maximum plastic shear strain amplitude, normal strain amplitude and mean normal stress on the plane of maximum shear strain amplitude. This parameter was combined with the Coffin-Manson equation for estimating fatigue lives. Observations of the cracking behavior show that mean stress affects the rate of crack growth and distribution of cracks.


2019 ◽  
Vol 28 (9) ◽  
pp. 1323-1343 ◽  
Author(s):  
Bowen Liu ◽  
Xiangqiao Yan

In this paper, based on the thought of Modified Wöhler Curve Method (MWCM), a new general model for predicting multiaxial fatigue life with influence of mean stress is presented. Different from the MWCM, the expressions of multiaxiality effect and mean stress effect are located separately in the proposed fatigue equation, so that the new model can consider the impact of both axial and torsional mean stresses, and the equation form possesses excellent extendibility and variability. The wildly used von Mises equivalent stress is adopted as the fatigue parameter to improve computational efficiency. Finally, in conjunction with the Itoh criterion, the model can be trivially extended to perform non-proportional fatigue prediction with different mean stresses. Some representative fatigue tests published in the previous literature are used to verify this study.


2019 ◽  
Vol 300 ◽  
pp. 08002
Author(s):  
Yajing Li ◽  
Bin Ren ◽  
Xu Chen

The effects of loading path and strain amplitude ratio on the cyclic behavior and fatigue life were investigated on a 316LN nuclear grade stainless steel employing a series of symmetrically strain-controlled fatigue tests at room temperature. The loading paths of Uniaxial, Torsional, Proportional, Rhombic, Rectangular, and Circular were employed with the constant equivalent strain amplitude of 0.5%. The strain amplitude ratio of 2.35, 1.73 and 1.27, defined by the ratio of shear strain amplitude to the axial strain amplitude, was realized by changing the shear strain amplitude under Proportional, Rhombic, Rectangular and Elliptical loading paths. As expected, the significant non-proportional additional hardening was observed. It’s interesting to note that the axial cyclic stress response varied with the strain amplitude ratio, and the law was different under different loading paths. The fatigue life of all the tests were evaluated by three critical plane criteria proposed by Smith-Watson-Topper (SWT), Fatemi-Socie (FS) and Chen-Xu-Huang (CXH). Results show that the SWT criterion significantly overestimated the fatigue life of non-proportional loading because the effect of shear damage was not considered. The CXH criterion for tensile-type failure yielded good prediction results except for two torsional data points. The FS criterion provided better predictions than other models.


2016 ◽  
Vol 250 ◽  
pp. 157-162
Author(s):  
Lukasz Pejkowski ◽  
Dariusz Skibicki ◽  
Mateusz Wirwicki

High–cycle multiaxial fatigue tests under proportional and non-proportional loading conditions with various combinations of superimposed static mean stresses was carried out on Cu-ETP copper. The results show differences in fatigue life between various ratios of mean stresses. These results are similar to others described in the literature.


2016 ◽  
Vol 853 ◽  
pp. 246-250 ◽  
Author(s):  
Tao Fang ◽  
Qian Hua Kan ◽  
Guo Zheng Kang ◽  
Wen Yi Yan

Experiments on U75V rail steel were carried out to investigate the cyclic feature, ratcheting behavior and low-cycle fatigue under both strain- and stress-controlled loadings at room temperature. It was found that U75V rail steel shows strain amplitude dependent cyclic softening feature, i.e., the responded stress amplitude under strain-controlled decreases with the increasing number of cycles and reaches a stable value after about 20th cycle. Ratcheting strain increases with an increasing stress amplitude and mean stress, except for stress ratio, and the ratcheting strain in failure also increases with an increasing stress amplitude, mean stress and stress ratio. The low-cycle fatigue lives under cyclic straining decrease linearly with an increasing strain amplitude, the fatigue lives under cyclic stressing decrease with an increasing mean stress except for zero mean stress, and decrease with an increasing stress amplitude. Ratcheting behavior with a high mean stress reduces fatigue life of rail steel by comparing fatigue lives under stress cycling with those under strain cycling. Research findings are helpful to evaluate fatigue life of U75V rail steel in the railways with passenger and freight traffic.


2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


Sign in / Sign up

Export Citation Format

Share Document