Field Calibration of Orifice Meters for Natural Gas Flow

1989 ◽  
Vol 111 (1) ◽  
pp. 22-33
Author(s):  
V. C. Ting ◽  
J. J. S. Shen

This paper presents the orifice calibration results for nominal 15.24, 10.16, and 5.08-cm (6, 4, 2-in.) orifice meters conducted at the Chevron’s Sand Hills natural gas flow measurement facility in Crane, Texas. Over 200 test runs were collected in a field environment to study the accuracy of the orifice meters. Data were obtained at beta ratios ranging from 0.12 to 0.74 at the nominal conditions of 4576 kPa and 27°C (650 psig and 80°F) with a 0.57 specific gravity processed, pipeline quality natural gas. A bank of critical flow nozzles was used as the flow rate proving device to calibrate the orifice meters. Orifice discharge coefficients were computed with ANSI/API 2530-1985 (AGA3) and ISO 5167/ASME MFC-3M-1984 equations for every set of data points. The uncertainty of the calibration system was analyzed according to The American National Standard (ANSI/ASME MFC-2M-A1983). The 10.16 and 5.08-cm (4 and 2-in.) orifice discharge coefficients agreed with the ANSI and ISO standards within the estimated uncertainty level. However, the 15.24-cm (6-in.) meter deviated up to − 2 percent at a beta ratio of 0.74. With the orifice bore Reynolds numbers ranging from 1 to 9 million, the Sand Hills calibration data bridge the gap between the Ohio State water data at low Reynolds numbers and Chevron’s high Reynolds number test data taken at a larger test facility in Venice, Louisiana. The test results also successfully demonstrated that orifice meters can be accurately proved with critical flow nozzles under realistic field conditions.

Volume 1 ◽  
2004 ◽  
Author(s):  
Thomas B. Morrow

The Metering Research Facility (MRF) was commissioned in 1995/1996 at Southwest Research Institute for research on, and calibration of natural gas flow meters. A key commissioning activity was the calibration of critical flow Venturi (sonic) nozzles by a gravimetric proving process flowing nitrogen or natural gas at different pressures. This paper concerns the calibration of the four sonic nozzles installed in the MRF Low Pressure Loop (LPL). Recently, a new project prompted a review of the relations used to calculate sonic nozzle discharge coefficient in the LPL data acquisition computer code. New calibrations of the LPL sonic nozzles were performed flowing natural gas over a lower range of pressure than used in the original commissioning tests. The combination of new and old gravimetric calibration data are shown to agree well with correlations published by Arnberg and Ishibashi (2001) and by Ishibashi and Takamoto (2001) for laminar, transitional and turbulent boundary layer flow in critical flow Venturi nozzles.


Energy Policy ◽  
2017 ◽  
Vol 106 ◽  
pp. 288-297 ◽  
Author(s):  
Maaike C. Bouwmeester ◽  
J. Oosterhaven

2013 ◽  
Vol 15 ◽  
pp. 27-37 ◽  
Author(s):  
Mahmood Farzaneh-Gord ◽  
Hamid Reza Rahbari ◽  
Mahdi Bajelan ◽  
Lila Pilehvari

Author(s):  
Nataliia Fialko ◽  
◽  
Julii Sherenkovskiy ◽  
Nataliia Meranova ◽  
Serhii Aloshko ◽  
...  

For microjet burners of the stabilizer type, a study of the regularities of the natural gas flow in the inner cavity of the flame stabilizer has been carried out. A comparative analysis of the features of heat transfer from the inner surfaces of the stabilizer walls is carried out for two variants of its configuration: flat and in the presence of trapezoidal niches on its lateral surfaces.


2011 ◽  
Vol 31 (14-15) ◽  
pp. 2605-2615 ◽  
Author(s):  
Hee Bum Lee ◽  
Bum Jin Park ◽  
Shin Hyung Rhee ◽  
Jun Hong Bae ◽  
Kyung Won Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document