Performance Evaluation of Linear Turbine Cascades Using Three-Dimensional Viscous Flow Calculations

1985 ◽  
Vol 107 (4) ◽  
pp. 969-975 ◽  
Author(s):  
J. Moore ◽  
J. G. Moore

The overall performance of two geometrically similar linear turbine cascades is calculated using an elliptic flow program. The increase in the mass-averaged total pressure loss is calculated within and downstream of the cascades and the results show good agreement with the measured values. The buildup and decay of the secondary kinetic energy are also shown; measurements are available for one of the cascades near and downstream of the trailing edge and these are in close agreement with the calculated values. Details of the flow development are also compared with measurements. Calculated velocity vectors near the endwall show the overturning revealed by surface flow visualization and similarly near the suction surface the strong spanwise flow is well calculated. Calculated contours of total pressure loss in cross-sectional planes confirm the important interaction of the passage vortex with the profile boundary layer at midspan. Regions of high loss near midspan are calculated downstream of both cascades; this three-dimensional flow development is followed in the calculations.

Author(s):  
Ping-Ping Chen ◽  
Wei-Yang Qiao ◽  
Karsten Liesner ◽  
Robert Meyer

The large secondary flow area in the compressor hub-corner region usually leads to three-dimensional separation in the passage with large amounts of total pressure loss. In this paper numerical simulations of a linear high-speed compressor cascade, consisting of five NACA 65-K48 stator profiles, were performed to analyze the flow mechanism of hub-corner separation for the base flow. Experimental validation is used to verify the numerical results. Active control of the hub-corner separation was investigated by using boundary layer suction. The influence of the selected locations of the endwall suction slot was investigated in an effort to quantify the gains of the compressor cascade performance. The results show that the optimal chordwise location should contain the development section of the three-dimensional corner separation downstream of the 3D corner separation onset. The best pitchwise location should be close enough to the vanes’ suction surface. Therefore the optimal endwall suction location is the MTE slot, the one from 50% to 75% chord at the hub, close to the blade suction surface. By use of the MTE slot with 1% suction flow ratio, the total-pressure loss is substantially decreased by about 15.2% in the CFD calculations and 9.7% in the measurement at the design operating condition.


Author(s):  
Donghyun Kim ◽  
Changmin Son ◽  
Kuisoon Kim

In the present study, a multi-stage transonic compressor has been analyzed to investigate secondary loss structures and flow interactions in the corner region where the hub endwall and blade suction surface meet. The Detached Eddy Simulation (DES) approach is used successfully with the Shear Stress Transport (SST) turbulence model to directly resolve the eddy structure in the separated region. The SST-DES results for a transonic three stage axial compressor are compared with a RANS analysis obtained using ANSYS CFX. The present analysis indicates that the DES is better in simulating secondary losses and vortex structures than the RANS. With the DES, a large three-dimensional separation is predicted in the stator suction surface and hub endwall compared to the RANS prediction. The flow separation affects adversely the loss characteristics such as increases in the entropy and total pressure loss. The DES analysis indicates that the secondary flow phenomenon of the stator rows is apparent in all stages. It is observed to predict two distinct vortices induced by a three dimensional flow separation in the region adjacent to the suction surface and trailing edge of the last stage stator near the hub endwall. For the front two stages, the DES also predicts strong vortices and flow separation in the same corner region while the RANS analysis fails to predict them clearly. The total pressure loss prediction is concerned, the DES analysis predicts significantly larger than the RANS analysis in the region where the hub corner separation occurs. The DES is also found to predict a periodic fluctuations in the entropy, leading to the instantaneous efficiency variations with maximum differences of about 10% compared with the RANS solutions.


Author(s):  
Toyotaka Sonoda ◽  
Toshiyuki Arima ◽  
Mineyasu Oana

Experimental and numerical investigations were carried out to gain a better understanding of the flow characteristics within an annular S-shaped duct, including the effect of the inlet boundary layer (IBL) on the flow. A duct with six struts and the same geometry as that used to connect compressor spools on our experimental small two-spool turbofan engine was investigated. A curved downstream annular passage with a similar meridional flow path geometry to that of the centrifugal compressor has been fitted at the exit of S-shaped duct. Two types of the IBL (i.e. thin and thick IBL) were used. Results showed that large differences of flow pattern were observed at the S-Shaped duct exit between two types of the IBL, though the value of “net” total pressure loss has not been remarkably changed. According to “overall” total pressure loss, which includes the IBL loss, the total pressure loss was greatly increased near the hub as compared to that for a thin one. For the thick IBL, a vortex pair related to the hub-side horseshoe vortex and the separated flow found at the strut trailing edge has been clearly captured in the form of the total pressure loss contours and secondary flow vectors, experimentally and numerically. The high-pressure loss regions on either side of the strut wake near the hub may act on a downstream compressor as a large inlet distortion, and strongly affect the downstream compressor performance. There is a much-distorted three-dimensional flow pattern at the exit of S-Shaped duct. This means that the aerodynamic sensitivity of S-Shaped duct to the IBL thickness is very high. Therefore, sufficient carefulness is needed to design not only downstream aerodynamic component (for example centrifugal impeller) but also upstream aerodynamic component (LPC OGV).


1994 ◽  
Vol 116 (3) ◽  
pp. 517-526 ◽  
Author(s):  
J. F. Carrotte ◽  
P. A. Denman ◽  
A. P. Wray ◽  
P. Fry

A rectangular model simulating four sectors of a combustion chamber was used to compare the performance of a standard dump diffuser, of overall length 180 mm, with that of a faired design 25.5 mm shorter. The performance of each system was assessed in terms of total pressure loss and static pressure recovery between prediffuser inlet and the annuli surrounding the flame tube. Since the program objective was to test design concepts only, no allowance was made for the presence of burner feed arms or flame tube support pins. In addition, tests were performed with relatively low levels of inlet turbulence and no wake mixing effects from upstream compressor blades. Relative to the dump design, the mass weighted total pressure loss to the outer and inner annuli was reduced by 30 and 40 percent, respectively, for the faired diffuser. Measurements around the flame tube head were used to identify regions of high loss within each system and account for the differences in performance. Within a dump diffuser the flow separates at prediffuser exit resulting in a free surface diffusion around the flame tube head and a recirculating flow in the dump cavity. This source of loss is eliminated in the faired system where the flow remains attached to the casings. Furthermore, the faired system exhibited similar velocity magnitudes and gradients around the combustor head despite its shorter length.


Author(s):  
J. F. Carrotte ◽  
P. A. Denman ◽  
A. P. Wray ◽  
P. Fry

A rectangular model simulating 4 sectors of a combustion chamber was used to compare the performance of a standard dump diffuser, of overall length 180mm, with that of a faired design 25.5mm shorter. The performance of each system was assessed in terms of total pressure loss and static pressure recovery between pre-diffuser inlet and the annuli surrounding the flame tube. Since the program objective was to test design concepts only, no allowance was made for the presence of burner feed arms or flame tube support pins. In addition, tests were performed with relatively low levels of inlet turbulence and no wake mixing effects from upstream compressor blades. Relative to the dump design, the mass weighted total pressure loss to the outer and inner annuli was reduced by 30% and 40% respectively for the faired diffuser. Measurements around the flame tube head were used to identify regions of high loss within each system and account for the differences in performance. Within a dump diffuser the flow separates at pre-diffuser exit resulting in a free surface diffusion around the flame tube head and a recirculating flow in the dump cavity. This source of loss is eliminated in the faired system where the flow remains attached to the inner casing. Furthermore, the faired system exhibited similar velocity magnitudes and gradients around the combustor head despite its shorter length.


Author(s):  
Toyotaka Sonoda ◽  
Toshiyuki Arima ◽  
Mineyasu Oana

Experimental and numerical investigations were carried out to gain a better understanding or the flow characteristics within an annular S-shaped duct, including the influence of the shape of the downstream passage located at the exit of the duct on the flow. A duct with six struts and the same geometry as that used to connect the compressor spools on our new experimental small two-spool turbofan engine was investigated. Two types of downstream passage were used. One type had a straight annular passage and the other a curved annular passage with a similar meridional flow path geometry to that of the centrifugal compressor. Results showed that the total pressure loss near the hub is large due to instability of the flow, as compared with that near the casing. Also, a vortex related to the horseshoe vortex was observed near the casing, in the case of the curved annular passage, the total pressure loss near the hub was greatly increased compared with the case of the straight annular passage, and the spatial position of the above vortex depends on the passage core pressure gradient. Furthermore, results of calculation using an in-house-developed three-dimensional Navier-Stokes code with a low Reynolds number k-ε turbulence model were in good qualitative agreement with experimental results. According to the simulation results, a region of very high pressure loss is observed near the hub at the duct exit with the increase of inlet boundary layer thickness. Such regions of high pressure loss may act on the downstream compressor as a large inlet distortion, and strongly affect downstream compressor performance.


1999 ◽  
Vol 121 (2) ◽  
pp. 410-417 ◽  
Author(s):  
M. I. Yaras

The paper presents detailed measurements of the incompressible flow development in a large-scale 90 deg curved diffuser with strong curvature and significant streamwise variation in cross-sectional aspect ratio. The flow path approximates the so-called fishtail diffuser utilized on small gas turbine engines for the transition between the centrifugal impeller and the combustion chamber. Two variations of the inlet flow, differing in boundary layer thickness and turbulence intensity, are considered. Measurements consist of three components of velocity, static pressure and total pressure distributions at several cross-sectional planes throughout the diffusing bend. The development and mutual interaction of multiple pairs of streamwise vortices, redistribution of the streamwise flow under the influence of these vortices, the resultant streamwise variations in mass-averaged total-pressure and static pressure, and the effect of inlet conditions on these aspects of the flow are examined. The strengths of the vortical structures are found to be sensitive to the inlet flow conditions, with the inlet flow comprising a thinner boundary layer and lower turbulence intensity yielding stronger secondary flows. For both inlet conditions a pair of streamwise vortices develop rapidly within the bend, reaching their peak strength at about 30 deg into the bend. The development of a second pair of vortices commences downstream of this location and continues for the remainder of the bend. Little evidence of the first vortex pair remains at the exit of the diffusing bend. The mass-averaged total pressure loss is found to be insensitive to the range of inlet-flow variations considered herein. However, the rate of generation of this loss along the length of the diffusing bend differs between the two test cases. For the case with the thinner inlet boundary layer, stronger secondary flows result in larger distortion of the streamwise velocity field. Consequently, the static pressure recovery is somewhat lower for this test case. The difference between the streamwise distributions of measured and ideal static pressure is found to be primarily due to total pressure loss in the case of the thick inlet boundary layer. For the thin inlet boundary layer case, however, total pressure loss and flow distortion are observed to influence the pressure recovery by comparable amounts.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Stuart I. Benton ◽  
Jeffrey P. Bons ◽  
Rolf Sondergaard

Efforts to increase individual blade loading in the low pressure turbine have resulted in blade geometries optimized for midspan performance. Many researchers have shown that increased blade loading and a front-loaded pressure distribution each separately contribute to increased losses in the endwall region. A detailed investigation of the baseline endwall flow of the L2F profile, which is a high-lift front loaded profile, is performed. In-plane velocity vectors and total pressure loss maps are obtained in five planes oriented normal to the blade surface for three Reynolds numbers. A row of pitched and skewed jets are introduced near the endwall on the suction surface of the blade. The flow control method is evaluated for four momentum coefficients at the high Reynolds number, with a maximum reduction of 42% in the area averaged total pressure loss coefficient. The same blade is also fitted with midspan vortex-generator jets and is tested at a Reynolds number of 20,000, resulting in a 21% reduction in the area averaged total pressure loss.


1998 ◽  
Vol 120 (4) ◽  
pp. 714-722 ◽  
Author(s):  
T. Sonoda ◽  
T. Arima ◽  
M. Oana

Experimental and numerical investigations were carried out to gain a better understanding of the flow characteristics within an annular S-shaped duct, including the influence of the shape of the downstream passage located at the exit of the duct on the flow. A duct with six struts and the same geometry as that used to connect the compressor spools on our new experimental small two-spool turbofan engine was investigated. Two types of downstream passage were used. One type had a straight annular passage and the other a curved annular passage with a meridional flow path geometry similar to that of the centrifugal compressor. Results showed that the total pressure loss near the hub is large due to instability of the flow, as compared with that near the casing. Also, a vortex related to the horseshoe vortex was observed near the casing. In the case of the curved annular passage, the total pressure loss near the hub was greatly increased compared with the case of the straight annular passage, and the spatial position of this vortex depends on the passage core pressure gradient. Furthermore, results of calculation using an in-house-developed three-dimensional Navier–Stokes code with a low-Reynolds-number k–ε turbulence model were in good qualitative agreement with experimental results. According to the simulation results, a region of very high pressure loss is observed near the hub at the duct exit with the increase of inlet boundary layer thickness. Such regions of high pressure loss may act on the downstream compressor as a large inlet distortion, and strongly affect downstream compressor performance.


1993 ◽  
Author(s):  
Gerald J. Micklow ◽  
Karthikeyan Shivaraman ◽  
H. Lee Nguyen

The performance of high shear airblast fuel injectors for advanced gas turbine combustors is highly dependent on the design of the swirl vanes. The vanes may be of the straight or curved type. Curved vanes usually exhibit lower losses but straight vanes are also used due to lower cost and ease of manufacture. These type of vanes often operate under highly stalled conditions with high total pressure loss and a highly non-uniform exit velocity profile. This can produce poor fuel atomization with a non-uniform combustor fuel distribution resulting in lowered combustor efficiency and increased pollutant emissions. Constant turning curved vanes can also be easily manufactured. Properly designed vanes result in a greatly reduced total pressure loss. The exit velocity distribution is more uniform and higher in magnitude resulting in improved fuel atomization and distribution in the combustor. The present study compares standard helical flat vane performance with a low loss curved vane designed by the author for idle, takeoff and cruise conditions. The results from a three dimensional viscous numerical flow simulation show the curved swirl vane to be clearly superior to the standard flat helical swirl vane. The curved vane has a much lower total pressure loss with a more uniform exit velocity profile. This will result in improved combustor and engine performance and reduced pollutant emissions.


Sign in / Sign up

Export Citation Format

Share Document