Development of a Thermal Analysis Model for a Nuclear Spent Fuel Storage Cask and Experimental Verification With Prototype Testing

1989 ◽  
Vol 111 (4) ◽  
pp. 647-651 ◽  
Author(s):  
J. Y. Hwang ◽  
L. E. Efferding

A thermal analysis evaluation is presented of a nuclear spent fuel dry storage cask designed by the Westinghouse Nuclear Components Division. The cask is designed to provide passive cooling of 24 Pressurized Water Reactor (PWR) spent fuel assemblies for a storage period of at least 20 years at a nuclear utility site (Independent Spent Fuel Storage Installation). A comparison is presented between analytical predictions and experimental results for a demonstration cask built by Westinghouse and tested under a joint program with the Department of Energy and Virginia Power Company. Demonstration testing with nuclear spent fuel assemblies was performed on a cask configuration designed to store 24 intact spent fuel assemblies or canisters containing fuel consolidated from 48 assemblies.

Author(s):  
Jeffrey T. Mitman ◽  
Ken Canavan

EPRI performed a Probabilistic Risk Assessment (PRA) of a dry spent fuel storage cask. The study was performed for a bolted cask at a “generic” pressurized water reactor site. A generic site was chosen so the widest variety of challenges could be considered. The study calculates the annual individual radiological risk and consequences associated with a single cask life cycle, where the life cycle is divided into three phases: loading, on-site transfer, and on-site storage. The project used standard methods of PRA with the following analysis tasks: initiating event (IE), data, human reliability, structural, thermal hydraulic, accident sequence, and consequence. The results shows that the risk is extremely low with no calculated early fatalities and a first year risk of latent cancer fatality of 3.5E−11 per year per cask. Subsequent year risk to the general public is even lower; with, again, no early fatalities and a cancer risk of 4.2E−12.


2019 ◽  
Vol 7 (3A) ◽  
Author(s):  
Claubia Pereira ◽  
Jéssica P. Achilles ◽  
Fabiano Cardoso ◽  
Victor F. Castro ◽  
Maria Auxiliadora F. Veloso

A spent fuel pool of a typical Pressurized Water Reactor (PWR) was evaluated for criticality studies when it uses reprocessed fuels. PWR nuclear fuel assemblies with four types of fuels were considered: standard PWR fuel, MOX fuel, thorium-uranium fuel and reprocessed transuranic fuel spiked with thorium. The MOX and UO2 benchmark model was evaluated using SCALE 6.0 code with KENO-V transport code and then, adopted as a reference for other fuels compositions. The four fuel assemblies were submitted to irradiation at normal operation conditions. The burnup calculations were obtained using the TRITON sequence in the SCALE 6.0 code package. The fuel assemblies modeled use a benchmark 17x17 PWR fuel assembly dimensions. After irradiation, the fuels were inserted in the pool. The criticality safety limits were performed using the KENO-V transport code in the CSAS5 sequence. It was shown that mixing a quarter of reprocessed fuel withUO2 fuel in the pool, it would not need to be resized 


Author(s):  
Sai Zhang ◽  
Jun Zhao ◽  
Jiejuan Tong ◽  
Zhixin Xu

Currently, the probabilistic risk assessments (PRA) for the nuclear power plant (NPP) sites are primarily focused on the reactor counterpart. However, evoked by the 2011 Fukushima Daiichi accident, it has been widely recognized that a complete site risk profile should not be confined to the reactor units, but should cover all the radiological sources in a site, e.g. spent fuel storage facilities. During the operation of the reactor units, the used fuel assemblies will be unloaded from the reactor core to the storage facilities in a continuous or periodical manner. Accident scenarios involving such facilities can occur with non-negligible frequencies and significant consequences, posing threat to public safety. Hence, the risk contributions from such scenarios should be carefully estimated and integrated into the safety goal evaluations. The spent fuel storage facilities can be categorized as two types: pool storage units and dry cask storage facilities. In the former type, spent fuel assemblies are stored in large pools inside or outside the reactor building, with the residual heat removed by natural or forced water circulation. The latter type, where air or inert gas circulation plays an important role, appear mostly as a complementary method, along with the pool storage units, to expand the plant’s storage capacity. For instance, at the Daiichi plant, there are several fuel pool units holding some fresh fuel and some used fuel, the latter awaiting for its transfer to the dry cask storage facilities on site. Note that, as well as in a joint manner, both storage facilities can be designed to serve the NPPs independently. As a fully developed method to identify potential risk in a logical and quantitative way, the framework of PRA can be generally applied to the spent fuel storage facilities with some special considerations. This paper is aimed at giving recommendations for the spent fuel storage facility PRAs, including (1) clarifying the analysis scope of risk from spent fuel storage facilities; (2) illustrating four key issues that determines such risk; (3) presenting three essential considerations when conducting PRAs to evaluate such risk. Also, this paper integrates the insights obtained from two representative case studies involving two NPP sites with different types of both fuel elements and storage facilities.


Author(s):  
Jie Li ◽  
Yung Y. Liu

This paper is a continuation of previous work; it focuses on validating the thermal analysis of a vertical dry storage cask by using the measured temperature data and the results obtained by others in thermal modeling of a HI-STORM 100 storage cask at Diablo Canyon’s independent spent fuel storage installation (ISFSI). The cask chosen for thermal analysis contains a welded canister for 32 pressurized water reactor (PWR) used fuel assemblies in a stainless-steel basket with a total decay heat load of 17.05 kW. An effective thermal conductivity model was used to represent the used fuel assemblies with non-uniform assembly heat loads. The pressure of the canister’s helium fill gas was assumed to be 5 atm, and the ambient temperature was assumed to be 10°C. The results showed reasonably good agreement between the calculated and measured canister axial surface temperatures. The results of ANSYS/FLUENT simulations showed that a tighter convergence criterion yielded slightly better agreement with the data; however, improvement could be obtained by adjusting the assumed ambient temperature value in the simulation. Validating the results of ANSYS/FLUENT simulation against the data (as well as the experience and additional insights gained from the validation exercise) is important to our future simulation and analysis of the thermal performance of dry storage casks, particularly for aging management and monitoring the condition and performance of dry casks during extended long-term storage at ISFSIs.


Author(s):  
Surik Bznuni ◽  
Armen Amirjanyan ◽  
Shahen Poghosyan

Criticality safety assessment for WWER-440 NUHOMS® cask with spent nuclear fuel from Armenian NPP has been performed. The cask was designed in a such way that the neutron multiplication factor keff must be below 0,95 for all operational modes and accident conditions. Usually for criticality analysis, fresh fuel approach with the highest enrichment is taken as conservative assumption as it was done for ANPP. Nuclear and Radiation Safety Centre of Armenian Nuclear Regulatory Authority (NRSC ANRA) in order to improve future fuel storage efficiency, initiated research with taking into account burn up credit in the criticality safety assessment. Axial burn up profile (end effect) has essential impact on criticality safety justification analysis. However this phenomenon wasn’t taken into account in the Safety Analysis Report of NUHOMS® spent fuel storage constructed on the site of ANPP. Although ANRA doesn’t yet accept burn up credit approach for ANPP spent fuel storage, assessment of impact of axial burn up profile on criticality of spent fuel assemblies has important value for future activities of ANRA. This paper presents results of criticality safety analysis of spent fuel assemblies with axial burn up profile. Horizontal burn up profile isn’t taken account since influence of the horizontal variation of the burn up is much less than the axial variation. The Actinides and Actinides + Fission Products approach are discussed. The calculations were carried out with STARBUCS module of SCALE 5.0 code package developed at Oak Ridge National laboratory. SCALE5.0 sequence CSAS26 (KENO-VI) was used for evaluation the keff for 3-D problems. Obtained results showed that criticality of ANPP spent fuel cask is very sensitive to the end effect. Using Burn up profiles of Control Assemblies in both approaches leads to much more increasing than in case of Working Assemblies. Usually increasing burn up leads to decreasing Δkeff, hence decreasing end effect. However for WWER-440 Control Assemblies that worked only within 6th (operative) group increasing burn up leads to increasing of the end effect.


Sign in / Sign up

Export Citation Format

Share Document