Leading Edge Separation From a Blunt Plate at Low Reynolds Number

1980 ◽  
Vol 102 (4) ◽  
pp. 494-496 ◽  
Author(s):  
J. C. Lane ◽  
R. I. Loehrke

The flow over a blunt plate aligned parallel to the stream was visualized using dye tracers. A leading edge separation bubble was observed to form at a Reynolds number based on plate thickness of 100. The steady, laminar separation bubble on a long plate, L/t ≥ 8, grows in size with increasing Reynolds number reaching a maximum streamwise length at Ret = 325. The separated shear layer becomes unsteady and the bubble shrinks in size with further increases in Reynolds number. The leading and trailing edge separation zones on short plates, L/t ≤ 4, may combine to form a large recirculation pocket.

1991 ◽  
Vol 113 (3) ◽  
pp. 405-410 ◽  
Author(s):  
Kyuro Sasaki ◽  
Masaru Kiya

This paper describes the results of a flow visualization study which concerns three-dimensional vortex structures in a leading-edge separation bubble formed along the sides of a blunt flat plate. Dye and hydrogen bubbles were used as tracers. Reynolds number (Re), based on the plate thickness, was varied from 80 to 800. For 80 < Re < 320, the separated shear layer remains laminar up to the reattachment line without significant spanwise distortion of vortex filaments. For 320 < Re < 380, a Λ-shaped deformation of vortex filaments appears shortly downstream of the reattachment and is arranged in-phase in the downstream direction. For Re > 380, hairpin-like structures are formed and arranged in a staggered manner. The longitudinal and spanwise distances of the vortex arrangement are presented as functions of the Reynolds number.


Author(s):  
A Samson ◽  
S Sarkar

This paper describes the dynamics of a laminar separation bubble formed on the semi-circular leading edge of constant thickness aerofoil model. Detailed experimental studies are carried out in a low-speed wind tunnel, where surface pressure and time-averaged velocity in the separated region and as well as in the downstream are presented along with flow field visualisations through PIV for various Reynolds numbers ranging from 25,000 to 75,000 (based on the leading edge diameter). The results illustrate that the separated shear layer is laminar up to 20% of separation length and then the perturbations are amplified in the second half attributing to breakdown and reattachment. The bubble length is highly susceptible to change in Reynolds number and plays an important role in outer layer activities. Further, the transition of a separated shear layer is studied through variation of intermittency factor and comparing with existing correlations available in the literature for attached flow and as well as separated flow. Transition of the separated shear layer occurs through formation of K-H rolls, where the intermittency following spot propagation theory appears valid. The predominant shedding frequency when normalised with respect to the momentum thickness at separation remains almost constant with change in Reynolds number. The relaxation is slow after reattachment and the flow takes about five bubble lengths to approach a canonical layer.


Author(s):  
Ryoji Kojima ◽  
Taku Nonomura ◽  
Akira Oyama ◽  
Kozo Fujii

The flow fields around NACA0012 and NACA0002 at Reynolds number of 23,000, and their aerodynamic characteristics are analyzed. Computations are conducted with implicit large-eddy simulation solver and Reynolds-averaged-Navier-Stokes solver. Around this Reynolds number, the flow over an airfoil separates, transits and reattaches, resulting in generation of a laminar separation bubble at angle of attack in the range of certain degrees. Over a NACA0012 airfoil a separation point moves toward its leading edge with increasing angle of attack, and a separated flow may transit to create a short bubble. On the other hand, over a NACA0002 airfoil a separation point is kept at its leading edge, and a separated flow may transit to create a long bubble. Moreover, there appears nonlinearity in lift curve for NACA0012 airfoil, but does not appear in that for NACA0002 in spite of existence of a laminar separation bubble.


Author(s):  
Hossein Jabbari ◽  
Esmaeili Ali ◽  
Mohammad Hasan Djavareshkian

Since laminar separation bubbles are neutrally shaped on the suction side of full-span wings in low Reynolds number flows, a roughness element can be used to improve the performance of micro aerial vehicles. The purpose of this article was to investigate the leading-edge roughness element’s effect and its location on upstream of the laminar separation bubble from phase portrait point of view. Therefore, passive control might have an acoustic side effect, especially when the bubble might burst and increase noise. Consequently, the effect of the leading-edge roughness element features on the bubble’s behavior is considered on the acoustic pressure field and the vortices behind the NASA-LS0417 cross-section. The consequences express that the distribution of roughness in the appropriate dimensions and location could contribute to increasing the performance of the airfoil and the interaction of vortices produced by roughness elements with shear layers on the suction side has increased the sound frequency in the relevant sound pressure level (SPL). The results have demonstrated that vortex shedding frequency was increased in the presence of roughness compared to the smooth airfoil. Also, more complexity of the phase portrait circuits was found, retrieved from velocity gradient limitation. Likewise, the highest SPL is related to the state where the separation bubble phenomenon is on the surface versus placing roughness elements on the leading edge leads to a negative amount of SPL.


Author(s):  
Saravana Kumar Lakshmanan ◽  
Alok Mishra ◽  
Ashoke De

Accurate laminar-turbulent prediction is very much important to understand the complete performance characteristics of any airfoil which operates at low and medium Reynolds number. In this article, a numerical study has been performed over two different thick airfoils operating at low Reynolds number using k-ω SST, k-kl-ω and Spalart-Allmaras (SA) RANS models. The unsteady two dimensional (2D) simulations are performed over NACA 0021 and NACA 65-021 at Re 120,000 for a range of angle of attacks. The performances of these models are assessed through aerodynamic lift, drag and pressure coefficients. To obtain better comparison, the simulated results are compared with the experimental measurements and XFOIL results as well. In this present study, it is found that the k-kl-ω transition model is capable of predicting correct lift, drag coefficient and separation bubble as reported in experiments. At high angles of attack, this model fails to predict performance variables accurately. The SA and SST models are fail to predict laminar separation bubble. However, At high angle of attack, SA model shows better predictions compared to k-kl-ω and k-ω SST models.


Author(s):  
M.P. Uthra ◽  
A. Daniel Antony

Most admirable and least known features of low Reynolds number flyers are their aerodynamics. Due to the advancements in low Reynolds number applications such as Micro Air vehicles (MAV), Unmanned Air Vehicles (UAV) and wind turbines, researchers’ concentrates on Low Reynolds number aerodynamics and its effect on aerodynamic performance. The Laminar Separation Bubble (LSB) plays a deteriorating role in affecting the aerodynamic performance of the wings. The parametric study has been performed to analyse the flow around cambered, uncambered wings with different chord and Reynolds number in order to understand the better flow characteristics, LSB and three dimensional flow structures. The computational results are compared with experimental results to show the exact location of LSB. The presence of LSB in all cases is evident and it also affects the aerodynamic characteristics of the wing. There is a strong formation of vortex in the suction side of the wing which impacts the LSB and transition. The vortex structures impact on the LSB is more and it also increases the strength of the LSB throughout the span wise direction.


Author(s):  
Ming-Yang Wang ◽  
Zi-Liang Li ◽  
Sheng-Feng Zhao ◽  
Yan-Feng Zhang ◽  
Xin-Gen Lu

The laminar-turbulent transition process on the compressor blade surface is often induced by the laminar separation flow at low Reynolds number ( Re). In the present study, numerical simulations were conducted to investigate the structure of the laminar separation bubble and its effects on the profile loss of a high subsonic compressor airfoil under different Re conditions, and the mechanism for the performance deterioration of compressor airfoil at low Re was clarified. Besides, the airfoil was redesigned to obtain a series of airfoils with different loading distributions, and the aerodynamic performance of these airfoils was compared and analyzed in detail. According to the simulation results, the laminar separation bubble mainly determined the loss generation process of a compressor airfoil. When Re decreased from 12 × 105 to 1.5 × 105, the laminar separation bubble on the suction surface grew thicker and the length was increased by 11.2% of the axial chord. As such, the reversed flow inside the laminar separation bubble became more obvious and the turbulence level downstream of the maximum thickness of laminar separation bubble was increased. Also, the growth in the turbulent boundary layer was enhanced, causing more serious flow blockage and wake mixing. According to the Denton's profile loss model, the larger trailing edge loss caused by the stronger displacement effect of laminar separation bubble was supposed to be the main reason for the performance deterioration of compressor airfoil under low Re conditions. The ultra-front loading distribution for airfoil has the possibility to suppress or even eliminate the negative effect of laminar separation bubble, and the profile loss was decreased by 26.7% at Re = 1.5 × 105; however, the less significant performance improvement was observed at some higher Re. Moreover, the ultra-front loaded airfoil was less sensitive to the inlet turbulence level and the superiority still holds even at some supercritical conditions.


Sign in / Sign up

Export Citation Format

Share Document