Assessment of Different Turbulence Models for Predicting Laminar Separation Bubble Over Thick Airfoils

Author(s):  
Saravana Kumar Lakshmanan ◽  
Alok Mishra ◽  
Ashoke De

Accurate laminar-turbulent prediction is very much important to understand the complete performance characteristics of any airfoil which operates at low and medium Reynolds number. In this article, a numerical study has been performed over two different thick airfoils operating at low Reynolds number using k-ω SST, k-kl-ω and Spalart-Allmaras (SA) RANS models. The unsteady two dimensional (2D) simulations are performed over NACA 0021 and NACA 65-021 at Re 120,000 for a range of angle of attacks. The performances of these models are assessed through aerodynamic lift, drag and pressure coefficients. To obtain better comparison, the simulated results are compared with the experimental measurements and XFOIL results as well. In this present study, it is found that the k-kl-ω transition model is capable of predicting correct lift, drag coefficient and separation bubble as reported in experiments. At high angles of attack, this model fails to predict performance variables accurately. The SA and SST models are fail to predict laminar separation bubble. However, At high angle of attack, SA model shows better predictions compared to k-kl-ω and k-ω SST models.

Author(s):  
M.P. Uthra ◽  
A. Daniel Antony

Most admirable and least known features of low Reynolds number flyers are their aerodynamics. Due to the advancements in low Reynolds number applications such as Micro Air vehicles (MAV), Unmanned Air Vehicles (UAV) and wind turbines, researchers’ concentrates on Low Reynolds number aerodynamics and its effect on aerodynamic performance. The Laminar Separation Bubble (LSB) plays a deteriorating role in affecting the aerodynamic performance of the wings. The parametric study has been performed to analyse the flow around cambered, uncambered wings with different chord and Reynolds number in order to understand the better flow characteristics, LSB and three dimensional flow structures. The computational results are compared with experimental results to show the exact location of LSB. The presence of LSB in all cases is evident and it also affects the aerodynamic characteristics of the wing. There is a strong formation of vortex in the suction side of the wing which impacts the LSB and transition. The vortex structures impact on the LSB is more and it also increases the strength of the LSB throughout the span wise direction.


Author(s):  
Ming-Yang Wang ◽  
Zi-Liang Li ◽  
Sheng-Feng Zhao ◽  
Yan-Feng Zhang ◽  
Xin-Gen Lu

The laminar-turbulent transition process on the compressor blade surface is often induced by the laminar separation flow at low Reynolds number ( Re). In the present study, numerical simulations were conducted to investigate the structure of the laminar separation bubble and its effects on the profile loss of a high subsonic compressor airfoil under different Re conditions, and the mechanism for the performance deterioration of compressor airfoil at low Re was clarified. Besides, the airfoil was redesigned to obtain a series of airfoils with different loading distributions, and the aerodynamic performance of these airfoils was compared and analyzed in detail. According to the simulation results, the laminar separation bubble mainly determined the loss generation process of a compressor airfoil. When Re decreased from 12 × 105 to 1.5 × 105, the laminar separation bubble on the suction surface grew thicker and the length was increased by 11.2% of the axial chord. As such, the reversed flow inside the laminar separation bubble became more obvious and the turbulence level downstream of the maximum thickness of laminar separation bubble was increased. Also, the growth in the turbulent boundary layer was enhanced, causing more serious flow blockage and wake mixing. According to the Denton's profile loss model, the larger trailing edge loss caused by the stronger displacement effect of laminar separation bubble was supposed to be the main reason for the performance deterioration of compressor airfoil under low Re conditions. The ultra-front loading distribution for airfoil has the possibility to suppress or even eliminate the negative effect of laminar separation bubble, and the profile loss was decreased by 26.7% at Re = 1.5 × 105; however, the less significant performance improvement was observed at some higher Re. Moreover, the ultra-front loaded airfoil was less sensitive to the inlet turbulence level and the superiority still holds even at some supercritical conditions.


Author(s):  
Paul Ziadé ◽  
Pierre E. Sullivan

Large-eddy simulation and linear stability analysis were performed on a NACA 0025 airfoil at a chord Reynolds number of 105 and four angles of attack. The computations showed that the initial vortex roll-up quickly breaks down to three-dimensional turbulence. Flow separation was observed at all angles, whereas only the lowest angle of attack formed a laminar separation bubble due to flow transition occuring close to the airfoil surface. A Chebyshev collocation method was employed to solve the viscous and inviscid stability equations. Linear stability analysis demonstrated that high-frequency disturbances occur in the laminar separation bubble case, whereas lower frequencies are present for the fully separated angles of attack. The maximum disturbance growth rates were dampened with the addition of viscosity but negligible change in peak frequency was noted.


2020 ◽  
Vol 92 (8) ◽  
pp. 1125-1131
Author(s):  
Somashekar V. ◽  
Immanuel Selwyn Raj A.

Purpose This paper aims to deal with the numerical investigation of laminar separation bubble (LSB) characteristics (length and height of the bubble) of SS007 airfoil at the chord Reynolds number of Rec = 0.68 × 105 to 10.28 × 105. Design/methodology/approach The numerical simulations of the flow around SS007 airfoil were carried out by using the commercial fluid dynamics (CFD) software, ANalysis system (ANSYS) 15. To solve the governing equations of the flow, a cell-centred control volume space discretisation approach is used. Wind tunnel experiments were conducted at the chord-based Reynolds number of Rec = 1.6 × 105 to validate the aerodynamic characteristics over SS007 airfoil. Findings The numerical results revealed that the LSB characteristics of a SS007 airfoil, and the aerodynamic performances are validated with experimental results. The lift and drag coefficients for both numerical and experimental results show very good correlation at Reynolds number 1.6 × 105. The lift coefficient linearly increases with the increasing angle of attack (AOA) is relatively small. The corresponding drag coefficient was found to be very small. After the formation of LSB which leads to burst to cause airfoil stall, the lift coefficient decreases and increases the drag coefficient. Practical implications Low Reynolds number and LSB characteristics concept in aerodynamics is predominant for both civilian and military applications. These include high altitude devices, wind turbines, human powered vehicles, remotely piloted vehicles, sailplanes, unmanned aerial vehicle and micro aerial vehicle. In this paper, the micro aerial vehicle flight conditions considered and investigated the LSB characteristics for different Reynolds number. To have better aerodynamic performances, it is strongly recommended to micro aerial vehicle (MAV) design engineers that the MAV is to fly at 12 m/s (cruise speed). Social implications MAVs and unmanned aerial vehicles seem to give some of the technical challenges of nature conservation monitoring and law enforcement a versatile, reliable and inexpensive solution. Originality/value The SS007 airfoil delays the flow separation and improves the aerodynamic efficiency by increasing the lift and decreasing the drag. The maximum increase in aerodynamic efficiency is 12.5% at stall angle of attack compared to the reference airfoil at Re = 2 × 105. The results are encouraging and this airfoil could have better aerodynamic performance for the development of MAV.


Sign in / Sign up

Export Citation Format

Share Document