Mean Flow Characteristics of a Turbulent Offset Jet

1986 ◽  
Vol 108 (1) ◽  
pp. 82-88 ◽  
Author(s):  
J. R. R. Pelfrey ◽  
J. A. Liburdy

A detailed study of the mean flow characteristics of a turbulent offset jet is presented. The flow is characterized by a longitudinal variation of curvature, skewed impingement onto a flat surface, a recirculating region, and the development of a wall jet region. Flow structure is described in the preimpingement, recirculation and impingement regions. An interdependence is shown among the pressure differential across the jet, jet curvature and entrainment. The magnitude of the curvature strain rate is found to be significant and implies that this flow cannot be accurately modelled as a thin shear layer. The jet decay and spread rates are similar to those of a plane jet if appropriate curved coordinates are used. The extent of the impingement region is approximately 20 nozzle widths downstream, in agreement with previous studies.

2021 ◽  
Vol 108 ◽  
pp. 106377
Author(s):  
Mohammed Faheem ◽  
Aqib Khan ◽  
Rakesh Kumar ◽  
Sher Afghan Khan ◽  
Waqar Asrar ◽  
...  

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yuanchao Li ◽  
Huang Chen ◽  
Joseph Katz

Modeling of turbulent flows in axial turbomachines is challenging due to the high spatial and temporal variability in the distribution of the strain rate components, especially in the tip region of rotor blades. High-resolution stereo-particle image velocimetry (SPIV) measurements performed in a refractive index-matched facility in a series of closely spaced planes provide a comprehensive database for determining all the terms in the Reynolds stress and strain rate tensors. Results are also used for calculating the turbulent kinetic energy (TKE) production rate and transport terms by mean flow and turbulence. They elucidate some but not all of the observed phenomena, such as the high anisotropy, high turbulence levels in the vicinity of the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side (SS) tip corner. The applicability of popular Reynolds stress models based on eddy viscosity is also evaluated by calculating it from the ratio between stress and strain rate components. Results vary substantially, depending on which components are involved, ranging from very large positive to negative values. In some areas, e.g., in the tip gap and around the TLV, the local stresses and strain rates do not appear to be correlated at all. In terms of effect on the mean flow, for most of the tip region, the mean advection terms are much higher than the Reynolds stress spatial gradients, i.e., the flow dynamics is dominated by pressure-driven transport. However, they are of similar magnitude in the shear layer, where modeling would be particularly challenging.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 118 ◽  
Author(s):  
Hossein Hamidifar ◽  
Alireza Keshavarzi ◽  
Paweł M. Rowiński

Trees have been used extensively by river managers for improving the river environment and ecology. The link between flow hydraulics, bed topography, habitat availability, and organic matters is influenced by vegetation. In this study, the effect of trees on the mean flow, bed topography, and bed shear stress were tested under different flow conditions. It was found that each configuration of trees produced particular flow characteristics and bed topography patterns. The SR (single row of trees) model appeared to deflect the maximum velocity downstream of the bend apex toward the inner bank, while leading the velocity to be more uniformly distributed throughout the bend. The entrainment of sediment particles occurred toward the area with higher values of turbulent kinetic energy (TKE). The results showed that both SR and DR (double rows of trees) models are effective in relieving bed erosion in sharp ingoing bends. The volume of the scoured bed was reduced up to 70.4% for tests with trees. This study shows the effectiveness of the SR model in reducing the maximum erosion depth.


Author(s):  
Caleb Stanley ◽  
Georgios Etsias ◽  
Steven Dabelow ◽  
Dimitrios Dermisis ◽  
Ning Zhang

Submerged breakwaters are favored for their design simplicity in projects intended to dissipate wave energy and reduce erosion on coastlines. Despite their popularity, the effects that submerged breakwaters exhibit on the surrounding hydrodynamics are not clearly understood, mainly due to the flow complexity generated from 3-dimensional turbulent structures in the vicinity of the breakwaters that affect the mean flow characteristics and the transport of sediment. The objective of this study was to evaluate the effects that various geometric designs of submerged permeable breakwaters have on the turbulent flow characteristics. To meet the objective of this study, laboratory experiments were performed in a water-recirculating flume, in which the 3-dimensional velocity field was recorded in the vicinity of scaled breakwater models. Breakwaters that were tested include non-permeable, three-hole, and ten-hole models. The experimental data obtained was compared to results obtained from numerical simulations. Results demonstrated that permeable breakwaters exhibit more vertical turbulent strength than their non-permeable counterparts. It was also discovered that three-hole breakwater models produce higher turbulent fluctuations than that of the ten-hole breakwaters. The results from this study will be used eventually to enhance the performance of restoration projects in coastal areas in Louisiana.


1975 ◽  
Vol 42 (1) ◽  
pp. 51-54 ◽  
Author(s):  
N. W. Wilson ◽  
R. S. Azad

A single set of equations is developed to predict the mean flow characteristics in long circular pipes operating at laminar, transitional, and turbulent Reynolds numbers. Generally good agreement is obtained with available data in the Reynolds number range 100 < Re < 500,000.


1989 ◽  
Vol 8 (1-2) ◽  
pp. 77-85 ◽  
Author(s):  
G. J. Hitchman ◽  
A. A. Abdel-Rahman ◽  
P. R. Slawson ◽  
A. B. Strong

2012 ◽  
Vol 699 ◽  
pp. 320-351 ◽  
Author(s):  
Johan Malm ◽  
Philipp Schlatter ◽  
Dan S. Henningson

AbstractDominant frequencies and coherent structures are investigated in a turbulent, three-dimensional and separated diffuser flow at $\mathit{Re}= 10\hspace{0.167em} 000$ (based on bulk velocity and inflow-duct height), where mean flow characteristics were first studied experimentally by Cherry, Elkins and Eaton (Intl J. Heat Fluid Flow, vol. 29, 2008, pp. 803–811) and later numerically by Ohlsson et al. (J. Fluid Mech., vol. 650, 2010, pp. 307–318). Coherent structures are educed by proper orthogonal decomposition (POD) of the flow, which together with time probes located in the flow domain are used to extract frequency information. The present study shows that the flow contains multiple phenomena, well separated in frequency space. Dominant large-scale frequencies in a narrow band $\mathit{St}\equiv fh/ {u}_{b} \in [0. 0092, 0. 014] $ (where $h$ is the inflow-duct height and ${u}_{b} $ is the bulk velocity), yielding time periods ${T}^{\ensuremath{\ast} } = T{u}_{b} / h\in [70, 110] $, are deduced from the time signal probes in the upper separated part of the diffuser. The associated structures identified by the POD are large streaks arising from a sinusoidal oscillating motion in the diffuser. Their individual contributions to the total kinetic energy, dominated by the mean flow, are, however, small. The reason for the oscillating movement in this low-frequency range is concluded to be the confinement of the flow in this particular geometric set-up in combination with the high Reynolds number and the large separated zone on the top diffuser wall. Based on this analysis, it is shown that the bulk of the streamwise root mean square (r.m.s.) value arises due to large-scale motion, which in turn can explain the appearance of two or more peaks in the streamwise r.m.s. value. The weak secondary flow present in the inflow duct is shown to survive into the diffuser, where it experiences an imbalance with respect to the upper expanding corners, thereby giving rise to the asymmetry of the mean separated region in the diffuser.


Sign in / Sign up

Export Citation Format

Share Document