Added Mass and Damping for Cylinder Vibrations Within a Confined Fluid Using Deforming Finite Elements

1987 ◽  
Vol 109 (3) ◽  
pp. 283-288 ◽  
Author(s):  
R. Chilukuri

Added mass and fluid damping coefficients for vibrations of an inner cylinder that is enclosed by a concentric outer cylinder are determined by finite element analysis of the unsteady, laminar, incompressible flow in the annulus. Continuously deforming space-time finite elements are used to track the moving cylinder and the changing shape of the space domain. For small cylinder vibration amplitudes, the present results agree well with the work of earlier investigators who solved the linearized Navier-Stokes equations on a fixed mesh. Fluid damping coefficients are shown to increase with vibration amplitude. Added mass coefficients may either increase or decrease with increasing vibration amplitude.

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 580 ◽  
Author(s):  
Zahra Abdelmalek ◽  
Mohammad Yaghoub Abdollahzadeh Jamalabadi

Micromixers are significant segments inside miniaturized scale biomedical frameworks. Numerical investigation of the effects of galloping cylinder characteristics inside a microchannel Newtonian, incompressible fluid in nonstationary condition is performed. Governing equations of the system include the continuity equation, and Navier–Stokes equations are solved within a moving mesh domain. The symmetry of laminar entering the channel is broken by the self-sustained motion of the cylinder. A parameter study on the amplitude and frequency of passive moving cylinder on the mixing of tiny particles in the fluid is performed. The results show a significant increase to the index of mixing uses of the galloping body in biomedical frameworks in the course of micro-electromechanical systems (MEMS) devices.


Author(s):  
Dominique Legendre ◽  
Catherine Colin ◽  
Typhaine Coquard

The three-dimensional flow around a hemispherical bubble sliding and growing on a wall in a viscous linear shear flow is studied numerically by solving the full Navier–Stokes equations in a boundary-fitted domain. The main goal of the present study is to provide a complete description of the forces experienced by the bubble (drag, lift and added mass) over a wide range of sliding and shear Reynolds numbers (0.01≤ Re b , Re α ≤2000) and shear rate (0≤ Sr ≤5). The drag and lift forces are computed successively for the following situations: an immobile bubble in a linear shear flow; a bubble sliding on the wall in a fluid at rest; and a bubble sliding in a linear shear flow. The added-mass force is studied by considering an unsteady motion relative to the wall or a time-dependent radius.


1987 ◽  
Vol 109 (1) ◽  
pp. 71-76 ◽  
Author(s):  
J. O. Medwell ◽  
D. T. Gethin ◽  
C. Taylor

The performance of a cylindrical bore bearing fed by two axial grooves orthogonal to the load line is analyzed by solving the Navier-Stokes equations using the finite element method. This produces detailed information about the three-dimensional velocity and pressure field within the hydrodynamic film. It is also shown that the method may be applied to long bearing geometries where recirculatory flows occur and in which the governing equations are elliptic. As expected the analysis confirms that lubricant inertia does not affect bearing performance significantly.


2019 ◽  
Vol 27 (1) ◽  
pp. 43-52
Author(s):  
Jamil Satouri

Abstract In this paper we present a study of optimal control problem for the unsteady Navier–Stokes equations. We discuss the existence of the solution, adopt a new numerical resolution for this problem and combine Euler explicit scheme in time and both of methods spectral and finite elements in space. Finally, we give some numerical results proving the effectiveness of our approach.


Author(s):  
P. H. Gaskell ◽  
H. M. Thompson ◽  
M. D. Savage

A finite element formulation of the Navier—Stokes equations, written in terms of the stream function, ψ, and vorticity, ω, for a Newtonian fluid in the absence of body forces, is used to solve the problem of flow in a triangular cavity, driven by the uniform motion of one of its side walls. A key feature of the numerical method is that the difficulties associated with specifying ω at the corners are addressed and overcome by applying analytical boundary conditions on ω near these singularities. The computational results are found to agree well with previously published data and, for small stagnant corner angles, reveal the existence of a sequence of secondary recirculations whose relative sizes and strengths are in accord with Moffatt's classical theory. It is shown that, as the stagnant corner angle is increased beyond approximately 40°, the secondary recirculations diminish in size rapidly.


Sign in / Sign up

Export Citation Format

Share Document