Two-Dimensional Radiation in Absorbing-Emitting Media Using the P-N Approximation

1983 ◽  
Vol 105 (2) ◽  
pp. 333-340 ◽  
Author(s):  
A. C. Ratzel ◽  
J. R. Howell

Radiative energy transfer in a gray absorbing and emitting medium is considered in a two-dimensional rectangular enclosure using the P-N differential approximation. The two-dimensional moment of intensity partial differential equations (PDE’s) are combined to yield a single second-order PDE for the P-1 approximation and four coupled second-order PDE’s for the P-3 approximation. P-1 approximation results are obtained from separation of variables solutions, and P-3 results are obtained numerically using successive-over-relaxation methods. The P-N approximation results are compared with numerical Hottel zone results and with results from an approximation method developed by Modest. The studies show that the P-3 approximation can be used to predict emissive power distributions and heat transfer rates in two-dimensional media with opacities of unity or greater. The P-1 approximation is identical to the diffusion solution and is thus applicable only if the medium is optically dense.

2014 ◽  
Vol 12 (01) ◽  
pp. 1550012
Author(s):  
Lorenzo Fatibene ◽  
Raymond G. McLenaghan ◽  
Giovanni Rastelli

The second-order symmetry operators that commute with the Dirac operator with external vector, scalar and pseudo-scalar potentials are computed on a general two-dimensional spin manifold. It is shown that the operator is defined in terms of Killing vectors, valence two Killing tensors and scalar fields defined on the background manifold. The commuting operator that arises from a non-trivial Killing tensor is determined with respect to the associated system of Liouville coordinates and compared to the second-order operator that obtained from the unique separation scheme associated with such operators. It is shown by the study of several examples that the operators arising from these two approaches coincide.


1997 ◽  
Vol 119 (4) ◽  
pp. 730-737 ◽  
Author(s):  
H.-M. Koo ◽  
K.-B. Cheong ◽  
T.-H. Song

This paper presents numerical schemes and comparison of predictions of radiative heat transfer for the first and the second order discrete ordinates methods (DOM1 and DOM2) using an interpolation scheme. The formulations are followed by derivation of numerical schemes for two-dimensional body fitted grids. With varying the optical depths and the numbers of grids and ordinates, radiative wall heat fluxes by DOM1 and DOM2 are calculated to compare with the exact solutions for three kinds of two-dimensional enclosures (square, quadrilateral, and J-shaped) containing absorbing/emitting and nonscattering media of known temperature with cold black walls. Emissive power and radiative wall heat fluxes by DOM1 and DOM2 are calculated to compare with zonal results for two-dimensional square enclosure containing absorbing/emitting and isotropically scattering medium of known uniform heat source with cold black walls. The results of DOM1 and DOM2 are in good agreement with the exact solutions or the zonal results. DOM1 gives more accurate results than DOM2 for most of the tested optical depths and the numbers of grids and ordinates. These methods appear as powerful candidates of very versatile radiation analysis tool. Their grid and ordinate dependencies are also discussed in depth.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Author(s):  
G Atefi ◽  
M A Abdous ◽  
A Ganjehkaviri ◽  
N Moalemi

The objective of this article is to derive an analytical solution for a two-dimensional temperature field in a hollow cylinder, which is subjected to a periodic boundary condition at the outer surface, while the inner surface is insulated. The material is assumed to be homogeneous and isotropic with time-independent thermal properties. Because of the time-dependent term in the boundary condition, Duhamel's theorem is used to solve the problem for a periodic boundary condition. The periodic boundary condition is decomposed using the Fourier series. This condition is simulated with harmonic oscillation; however, there are some differences with the real situation. To solve this problem, first of all the boundary condition is assumed to be steady. By applying the method of separation of variables, the temperature distribution in a hollow cylinder can be obtained. Then, the boundary condition is assumed to be transient. In both these cases, the solutions are separately calculated. By using Duhamel's theorem, the temperature distribution field in a hollow cylinder is obtained. The final result is plotted with respect to the Biot and Fourier numbers. There is good agreement between the results of the proposed method and those reported by others for this geometry under a simple harmonic boundary condition.


Author(s):  
Robert L. McMasters ◽  
Filippo de Monte ◽  
James V. Beck ◽  
Donald E. Amos

This paper provides a solution for two-dimensional heating over a rectangular region on a homogeneous plate. It has application to verification of numerical conduction codes as well as direct application for heating and cooling of electronic equipment. Additionally, it can be applied as a direct solution for the inverse heat conduction problem, most notably used in thermal protection systems for re-entry vehicles. The solutions used in this work are generated using Green’s functions. Two approaches are used which provide solutions for either semi-infinite plates or finite plates with isothermal conditions which are located a long distance from the heating. The methods are both efficient numerically and have extreme accuracy, which can be used to provide additional solution verification. The solutions have components that are shown to have physical significance. The extremely precise nature of analytical solutions allows them to be used as prime standards for their respective transient conduction cases. This extreme precision also allows an accurate calculation of heat flux by finite differences between two points of very close proximity which would not be possible with numerical solutions. This is particularly useful near heated surfaces and near corners. Similarly, sensitivity coefficients for parameter estimation problems can be calculated with extreme precision using this same technique. Another contribution of these solutions is the insight that they can bring. Important dimensionless groups are identified and their influence can be more readily seen than with numerical results. For linear problems, basic heating elements on plates, for example, can be solved to aid in understanding more complex cases. Furthermore these basic solutions can be superimposed both in time and space to obtain solutions for numerous other problems. This paper provides an analytical two-dimensional, transient solution for heating over a rectangular region on a homogeneous square plate. Several methods are available for the solution of such problems. One of the most common is the separation of variables (SOV) method. In the standard implementation of the SOV method, convergence can be slow and accuracy lacking. Another method of generating a solution to this problem makes use of time-partitioning which can produce accurate results. However, numerical integration may be required in these cases, which, in some ways, negates the advantages offered by the analytical solutions. The method given herein requires no numerical integration; it also exhibits exponential series convergence and can provide excellent accuracy. The procedure involves the derivation of previously-unknown simpler forms for the summations, in some cases by virtue of the use of algebraic components. Also, a mathematical identity given in this paper can be used for a variety of related problems.


Sign in / Sign up

Export Citation Format

Share Document