Design Considerations for Aerodynamically Quenching Gas Sampling Probes

1984 ◽  
Vol 106 (2) ◽  
pp. 460-466 ◽  
Author(s):  
L. Chiappetta ◽  
M. B. Colket

An aerodynamic quench is the most rapid method for quenching temperature and pressure-dependent chemical reactions. Attempts have been made to quench gas samples aerodynamically, but many of these attempts have been unsuccessful because of a lack of understanding of the internal aerodynamics of sampling probes. A one-dimensional model developed previously by the authors has been used for the design and analysis of aerodynamically quenching probes. This paper presents in detail the important aerodynamic and heat transfer equations used in the model, a description of the method of solution, and the results of a sensitivity study. These calculations demonstrate the limitations and important trade-offs in design and operating conditions of probes using an aerodynamic quench.

2011 ◽  
Vol 115 (1164) ◽  
pp. 83-90 ◽  
Author(s):  
W. Bao ◽  
J. Qin ◽  
W. X. Zhou

Abstract A re-cooled cycle has been proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling. Upon the completion of the first cooling, fuel can be used for secondary cooling by transferring the enthalpy from fuel to work. Fuel heat sink (cooling capacity) is thus repeatedly used and fuel heat sink is indirectly increased. Instead of carrying excess fuel for cooling or seeking for any new coolant, the cooling fuel flow is reduced, and fuel onboard is adequate to satisfy the cooling requirement for the whole hypersonic vehicle. A performance model considering flow and heat transfer is build. A model sensitivity study of inlet temperature and pressure reveals that, for given exterior heating condition and cooling panel size, fuel heat sink can be obviously increased at moderate inlet temperature and pressure. Simultaneously the low-temperature heat transfer deterioration and Mach number constrains can also be avoided.


1981 ◽  
Vol 103 (2) ◽  
pp. 307-314 ◽  
Author(s):  
E. Doss ◽  
H. Geyer ◽  
R. K. Ahluwalia ◽  
K. Im

A two-dimensional model for MHD channel design and analysis has been developed for three different modes of operation: velocity, Mach number, and pressure. Given the distribution of any of these three parameters along the channel, the channel aspect ratio, and the channel operating conditions, the MHD channel geometry can be predicted. The developed two-dimensional design model avoids unnecessary assumptions for surface losses and boundary layer voltage drops that are required in one-dimensional calculations and, thus, can yield a better prediction of MHD channel geometry and performance. The subject model includes a simplified treatment for possible arcing near the electrode walls. A one-dimensional model for slag flow along the channel walls is also incorporated. The effects of wall temperature and slag carry-over on channel performance are discussed.


2007 ◽  
Vol 129 (4) ◽  
pp. 525-529 ◽  
Author(s):  
Bart Raeymaekers ◽  
Frank E. Talke

Acoustic emission sensors were used to detect contact between a moving tape and the flange of a tape guide. The influence of tape drive operating conditions on the tape edge contact force was studied. A one-dimensional model was developed to predict the magnitude of tape/flange impact. The model fits the experimental data well.


2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Fabio De Bellis ◽  
Angelo Grimaldi ◽  
Dante Tommaso Rubino ◽  
Riccardo Amirante ◽  
Elia Distaso

A simplified one-dimensional model for the performance estimation of vaneless radial diffusers is presented. The starting point of such a model is that angular momentum losses occurring in vaneless diffusers are usually neglected in the most common turbomachinery textbooks: It is assumed that the angular momentum is conserved inside a vaneless diffuser, although a nonisentropic pressure transformation is considered at the same time. This means that fluid-dynamic losses are taken into account only for what concerns pressure recovery, whereas the evaluation of the outlet tangential velocity incoherently follows an ideal behavior. Several attempts were presented in the past in order to consider the loss of angular momentum, mainly solving a full set of differential equations based on the various developments of the initial work by Stanitz (1952, “One-Dimensional Compressible Flow in Vaneless Diffusers of Radial or Mixed-Flow Centrifugal Compressors, Including Effects of Friction, Heat Transfer and Area Change,” Report No. NACA TN 2610). However, such formulations are significantly more complex and are based on two empirical or calibration coefficients (skin friction coefficient and dissipation or turbulent mixing loss coefficient) which need to be properly assessed. In the present paper, a 1D model for diffuser losses computation is derived considering a single loss coefficient, and without the need of solving a set of differential equations. The model has been validated against massive industrial experimental campaigns, in which several diffuser geometries and operating conditions have been considered. The obtained results confirm the reliability of the proposed approach, able to predict the diffuser performance with negligible drop of accuracy in comparison with more sophisticated techniques. Both preliminary industrial designs and experimental evaluations of the diffusers may benefit from the proposed model.


1978 ◽  
Vol 100 (3) ◽  
pp. 355-362 ◽  
Author(s):  
W. J. Comfort ◽  
T. W. Alger ◽  
W. H. Giedt ◽  
C. T. Crowe

A method for calculating quasi-one-dimensional, steady-state, two-phase dispersed droplet-in-vapor flow has been developed. The technique is applicable to both subsonic and supersonic single component flow in which normal shock waves may occur, and is the basis for a two-dimensional model. The flow is assumed to be inviscid except for droplet drag. Temperature and pressure equilibrium between phases is assumed, although this is not a requirement of the technique. Example calculations of flow in one-dimensional nozzles with and without normal shocks are given and compared with experimentally measured pressure profiles for both low quality and high quality two-phase steam-water flow.


1996 ◽  
Vol 63 (3) ◽  
pp. 575-581 ◽  
Author(s):  
Z. S. Olesiak ◽  
Yu. A. Pyryev

We consider two layers of different materials with the initial gap between them in the field of temperature with imperfect boundary conditions in Barber’s sense. The model we discuss is that of two contacting rods (Barber and Zhang, 1988) which in the case of a single rod was devised and discussed by Dundurs and Comninou (1976, 1979). In this paper we try to make a step further in the investigation of the essentially nonlinear problem. Though we consider a system of the linear equations of thermoelasticity the nonlinearity is induced by the boundary conditions dependent on the solution. We present an algorithm for solving the system of equations based on Laplace’s transform technique. The method of solution can be used also in the dynamical problems with inertial terms taken into account. The numerical results have been obtained by a kind of computational simulation.


Author(s):  
J. E. O’Brien ◽  
C. M. Stoots ◽  
J. Stephen Herring ◽  
G. L. Hawkes

A one-dimensional model has been developed to predict the thermal and electrochemical behavior of a high-temperature steam electrolysis stack. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet gas flow rates, current density, cell active area, and external heat loss or gain. The model includes a temperature-dependent area-specific resistance (ASR) that accounts for the significant increase in electrolyte ionic conductivity that occurs with increasing temperature. Model predictions are shown to compare favorably with results obtained from a fully 3-D computational fluid dynamics model. The one-dimensional model was also employed to demonstrate the expected trends in electrolyzer performance over a range of operating conditions including isothermal, adiabatic, constant steam utilization, constant flow rate, and the effects of operating temperature.


Author(s):  
Maria Grazia De Giorgi ◽  
Daniela Bello ◽  
Antonio Ficarella

The cavitation phenomenon interests a wide range of machines, from internal combustion engines to turbines and pumps of all sizes. It affects negatively the hydraulic machines’ performance and may cause materials’ erosion. The cavitation, in most cases, is a phenomenon that develops at a constant temperature, and only a relatively small amount of heat is required for the formation of a significant volume of vapor, and the flow is assumed isothermal. However, in some cases, such as thermosensible fluids and cryogenic liquid, the heat transfer needed for the vaporization is such that phase change occurs at a temperature lower than the ambient liquid temperature. The focus of this research is the experimental and analytical studies of the cavitation phenomena in internal flows in the presence of thermal effects. Experiments have been done on water and nitrogen cavitating flows in orifices at different operating conditions. Transient growth process of the cloud cavitation induced by flow through the throat is observed using high-speed video images and analyzed by pressure signals. The experiments show different cavitating behaviors at different temperatures and different fluids; this is related to the bubble dynamics inside the flow. So to investigate possible explanations for the influence of fluid temperature and of heat transfer during the phase change, initially, a steady, quasi-one-dimensional model has been implemented to study an internal cavitating flow. The nonlinear dynamics of the bubbles has been modeled by Rayleigh–Plesset equation. In the case of nitrogen, thermal effects in the Rayleigh equation are taken into account by considering the vapor pressure at the actual bubble temperature, which is different from the liquid temperature far from the bubble. A convective approach has been used to estimate the bubble temperature. The quasisteady one-dimensional model can be extensively used to conduct parametric studies useful for fast estimation of the overall performance of any geometric design. For complex geometry, three-dimensional computational fluid dynamic (CFD) codes are necessary. In the present work good agreements have been found between numerical predictions by the CFD FLUENT code, in which a simplified form of the Rayleigh equation taking into account thermal effects has been implemented by external user routines and some experimental observations.


Sign in / Sign up

Export Citation Format

Share Document