Augmentation of Laminar Flow Heat Transfer in Tubes by Means of Wire Coil Inserts

1985 ◽  
Vol 107 (4) ◽  
pp. 930-935 ◽  
Author(s):  
S. B. Uttarwar ◽  
M. Raja Rao

Experimental studies have been carried out on isothermal pressure drop and convective heat transfer to servotherm medium grade oil in laminar flow in one smooth tube and seven wire coil-inserted tubes of varying wire diameter and pitch of wire coil. The performance of these wire coil inserted tubes has been evaluated by two different criteria based on the objective of either maximizing heat transfer rate or minimizing exchanger size. The results indicated that as much as fourfold improvement can be obtained in laminar flow heat transfer coefficient using these tubes.

Author(s):  
Guillermo E. Valencia ◽  
Miguel A. Ramos ◽  
Antono J. Bula

The paper describes an experimental procedure performed to obtain the convective heat transfer coefficient of Al2O3 nanofluid working as cooling fluid under turbulent regimen through arrays of aluminum microchannel heat sink having a diameter of 1.2 mm. Experimental Nusselt number correlation as a function of the volume fractions, Reynolds, Peclet and Prandtl numbers for a constant heat flux boundary condition is presented. The correlation for Nusselt number has a good agreement with experimental data and can be used to predict heat transfer coefficient for this specific nanofluid, water/Al2O3. Furthermore, the pressure drop is also analyzed considering the different nanoparticles concentration.


Author(s):  
Lazarus Godson ◽  
B. Raja ◽  
D. Mohan Lal ◽  
S. Wongwises

The convective heat transfer coefficient and pressure drop of silver-water nanofluids is measured in a counter flow heat exchanger from laminar to turbulent flow regime. The experimental results show that the convective heat transfer coefficient of the nanofluids increases by up to 69% at a concentration of 0.9 vol. % compared with that of pure water. Furthermore, the experimental results show that the convective heat transfer coefficient enhancement exceeds the thermal conductivity enhancement. It is observed that the measured heat transfer coefficient is higher than that of the predicted ones using Gnielinski equation by at least 40%. The use of the silver nanofluid has a little penalty in pressure drop up to 55% increase 0.9% volume concentration of silver nanoparticles.


2018 ◽  
Vol 19 (1) ◽  
pp. 251-269 ◽  
Author(s):  
Hossein Fatahian ◽  
Hesamoddin Salarian ◽  
Majid Eshagh Nimvari ◽  
Esmaeel Fatahian

The present study investigated the thermal effects of the use of nanoparticles in the fuel-oil and water-based fluids, as well as the numerical simulation of laminar flow of fuel-oil-alumina and the water-alumina nanofluids in a channel. A second order discretization method was used for solving equations and a SIMPLE algorithm was applied for pressure-velocity coupling using Fluent. Effect of nanoparticle volume fraction and particles size in different Reynolds numbers (900≤Re≤2100) on the convective heat transfer coefficient was studied. The simulation was conducted for three different volume fractions and particle sizes in the laminar flow under constant heat flux. The results showed that adding nanoparticles to the base fluid caused an increase in the thermal conductivity ratio of the fluid, which was observed to a greater degree in the fuel oil-alumina nanofluid than in the water-alumina nanofluid. The increase in nanoparticle volume fraction caused an increase in the convective heat transfer coefficient and the Nusselt number of the nanofluids. The significant point of this study was that in the same volume fraction, the effect of adding alumina nanoparticles to the fuel-oil-based fluid had more effect than adding these particles to water-based fluid, while the effect of increasing the Reynolds number in the water-alumina nanofluid on convective heat transfer coefficient was greater than the fuel-oil-alumina. Also, in the same Reynolds number and volume fraction with increasing size of nanoparticles, the value of the convective heat transfer coefficient was decreased. The results of this study can be used in refineries and petrochemical industries where the fuel-oil fluid flows in the channels. ABSTRAK: Kajian ini adalah bagi mengkaji kesan haba terhadap penggunaan bahan bakar-minyak dan cecair asas-air dalam nanopartikel, juga menjalankan simulasi pengiraan aliran laminar bahan bakar-minyak-alumina dan cecair-nano air-alumina dalam saluran. Kaedah berasingan kelas kedua telah digunakan bagi menyelesaikan persamaan dan algoritma SIMPLE telah diaplikasikan dalam gandingan kelajuan-tekanan menggunakan Fluent. Kesan jumlah pecahan nanopartikel dan pelbagai bilangan saiz zarah dalam bilangan Reynolds (900≤Re≤2100) pada pekali pemindahan haba perolakan telah dikaji. Simulasi telah dijalankan pada tiga pecahan isipadu berlainan dan pada zarah dalam aliran laminar dengan fluks haba tetap. Hasil kajian menunjukkan bahawa dengan penambahan nanopartikel dalam cecair-asas menyebabkan peningkatan nisbah daya pengaliran haba cecair pada cecair-nano bahan bakar-minyak-alumina melebihi daripada cecair-nano air-alumina. Penambahan pada pecahan isipadu nanopartikel ini menyebabkan peningkatan pada nilai pekali pemindahan haba perolakan dan bilangan Nusselt dalam cecair-nano. Perkara penting dalam kajian ini adalah pada pecahan isipadu sama, kesan penambahan nanopartikel alumina kepada cecair berasaskan minyak mempunyai kesan yang lebih besar daripada penambahan zarah-zarah ini kepada cecair berasaskan air. Pada masa sama, kesan peningkatan bilangan Reynolds dalam cecair-nano air-alumina pada pekali pemindahan haba perolakan lebih besar daripada kesan peningkatan bahan bakar-minyak-alumina. Selain itu, pada bilangan Reynolds yang sama dan dengan peningkatan saiz nanopartikel pecahan isipadu, nilai pekali pemindahan haba perolakan turut menurun. Hasil kajian ini boleh digunakan dalam industri penapisan dan petrokimia di mana bahan bakar cecair minyak mengalir dalam saluran.


2011 ◽  
Vol 66-68 ◽  
pp. 876-881
Author(s):  
Wei Chang ◽  
Shu Sheng Zhang ◽  
Shuai Tian ◽  
Meng Jia Huo

Based on the establishment of a two-dimensional model, a numerical simulation was conducted in this paper to study the flow boiling and heat transfer characteristics of ethanol in a corrugated mini-channel. User defined functions were employed to describe the key processes of heat and mass exchange at the phase interface. Bubble growth profile was monitored over time and its influence on system pressure drop and heat transfer coefficient was also analyzed. The simulation result shows that the nucleation sites tend to distribute near the internal peaks of the heating wall due to the enhanced local turbulence. The system pressure drop increases over the heating time and fluctuates within a certain range. The heat transfer coefficient decreases with increasing quality, and this trend is consistent with the result of similar experimental studies.


Sign in / Sign up

Export Citation Format

Share Document