Vibratory Power Losses and Delivery to Rock During Rotary-Vibratory Drilling: Part II, Application

1980 ◽  
Vol 102 (1) ◽  
pp. 110-114
Author(s):  
L. D. Mitchell ◽  
D. C. Ohanehi

This paper applies the theoretical solution developed in Part 1 of this paper to a rotary-vibratory drilling unit. The theory developed and applied in these papers explains possible causes for the failures of such devices to perform properly in the vertical vibratory mode. This paper predicts improved performance based upon system design changes. Power delivery as a function of depth is studied. Power delivery problems at great depths are uncovered. Further system redesign is suggested. The redesign implementation in the model results in recovery of the power delivery capability to the rock.

1980 ◽  
Vol 102 (1) ◽  
pp. 102-109
Author(s):  
D. C. Ohanehi ◽  
L. D. Mitchell

This paper explores a possible theoretical basis for the failure of attempts to develop rotary-vibratory drilling units. With the critical needs in geothermal blast hole excavation and oil exploration, this nation cannot overlook the possibility of accelerating the drilling process by factors of 2 to 20 over the conventional rotary drilling rates. This paper develops the theory for the dynamic response of a vibrating drill string in a viscous drilling fluid with the energy lost to shear work. It develops the relations for power delivery to the rock as well as the total vibratory power to drive the system. Thus vibratory power losses can be computed by a difference. Part II of this paper applied this theory to a typical effort at developing a rotary-vibratory drilling unit. In the case studied, the power delivery was ineffective and at certain frequencies large losses resulted.


2006 ◽  
Vol 21 (3) ◽  
pp. 261-267 ◽  
Author(s):  
ENO THERESKA ◽  
DUSHYANTH NARAYANAN ◽  
GREGORY R. GANGER

Today, management and tuning questions are approached using if… then… rules of thumb. This reactive approach requires expertise regarding system behavior, making it difficult to deal with unforeseen uses of a system’s resources and leading to system unpredictability and large system management overheads. We propose a What…if… approach that allows interactive exploration of the effects of system changes, thus converting complex tuning problem into simpler search problems. Through two concrete management problems, automating system upgrades and deciding on service migrations, we identify system design changes that enable a system to answer What…if… questions about itself.


Author(s):  
James T. Allison

Modifying the design of an existing system to meet the needs of a new task is a common activity in mechatronic system development. Often engineers seek to meet requirements for the new task via control design changes alone, but in many cases new requirements are impossible to meet using control design only; physical system design modifications must be considered. Plant-Limited Co-Design (PLCD) is a design methodology for meeting new requirements at minimum cost through limited physical system (plant) design changes in concert with control system redesign. The most influential plant changes are identified to narrow the set of candidate plant changes. PLCD provides quantitative evidence to support strategic plant design modification decisions, including tradeoff analyses of redesign cost and requirement violation. In this article the design of a counterbalanced robotic manipulator is used to illustrate successful PLCD application. A baseline system design is obtained that exploits synergy between manipulator passive dynamics and control to minimize energy consumption for a specific pick-and-place task. The baseline design cannot meet requirements for a second pick-and-place task through control design changes alone. A limited set of plant design changes is identified using sensitivity analysis, and the PLCD result meets the new requirements at a cost significantly less than complete system redesign.


1989 ◽  
Vol 33 (2) ◽  
pp. 47-51 ◽  
Author(s):  
Elizabeth D. Murphy ◽  
Ray A. Reaux ◽  
Lisa J. Stewart ◽  
William D. Coleman ◽  
Kelly Harwood

As increasing levels of automation are planned for the United States' air traffic control system, there is a need to assess planned system design changes for their potential effects on human performance. The model of controller performance developed by this work permits the comparison of prior and planned system transition states on several performance dimensions: perceptual, analytic, response, and resource management. Systematic predictions of performance provide a basis for identifying potential trouble spots in a planned system. The model can be employed to determine whether system design changes will improve controller performance without placing unreasonable demands on the controller's resources. It can be tailored to represent human performance variables and sources of resource demand in any complex automated system.


2016 ◽  
Vol 846 ◽  
pp. 294-299
Author(s):  
Grant P. Steven ◽  
Jacob Celermajer

Long before FEA was developed, people were participating in sports and as competition intensified is became clear that for many sports, the equipment plays as important a part in performance as does the athlete. With the use of modern materials and manufacturing processes there is always scope for maximizing the performance of sporting equipment. Traditionally improvements were incremental, as athletes fed-back suggestions to manufacturers and new prototypes were built and tested. Given the cost of tooling for many of the current manufacturing methods, carbon fibre with resin infusion to mention one, it is clear that such build and test iterations are not as preferable given the potential of limited success and high cost.Modern simulation techniques are capable of examining a “day–in–the-life” of an object and from an examination of the envelope of response the most sensitive regions can be detected. Iteration on the design variables, provided they remain within any constraints, be they physical or otherwise, can be incorporated to investigate their effect on performance.In this paper non-linear transient dynamic (NLTD) FEA is undertaken on a 3 iron golf club impacting a golf ball. During the less than 0.5 millisecond impact the whole outcome of the shit is established. Design changes that can lead to improved performance are studied. From the FEA simulation information on ball top spin, side spin, take off velocity are investigated.


2013 ◽  
Vol 824 ◽  
pp. 100-107
Author(s):  
A.O. Melodi ◽  
S.O. Aremu

This is one in a series of need driven studies to evaluate the efficacy of power delivery of radial 132/33 kV substation-network arrangements under prevailing load conditions, which represents communities expansions and social developments. The specific condition of Omu-Aran 132/33 kV substation-network arrangement (SNA), which supplies electricity to 5 load-communities in 4 respective States with similar demand cultures, was examined. Outgoing 33kV Network lines (NLs) were designated according to the names of their respective termini-cities. The description of network elements obtained from the network control centres, and network parameters were evaluated using standard formulas. From time series logged data (2007-2010) at the SNA, the maximum power statistics were evaluated to define the peak load conditions on the NLs. The SNA was modelled mathematically for load flow computational experiments using, predominantly, Bus Admittance Matrix method. Efficacy of power delivery was analysed using, mainly, voltage and thermal capacity criteria. An analysis of the results established substantial and inadmissible voltage and power losses between substation and load-communities on the existing 33 kV network lines; efficient normal mode use of these lines requires implementation of drastic load shedding, network reconstruction or reinforcement by voltage and power saving requirements.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
James T. Allison

Modifying the design of an existing system to meet the needs of a new task is a common activity in mechatronic system development. Often, engineers seek to meet requirements for the new task via control design changes alone, but in many cases new requirements are impossible to meet using control design only; physical system design modifications must be considered. Plant-limited co-design (PLCD) is a design methodology for meeting new requirements at minimum cost through limited physical system (plant) design changes in concert with control system redesign. The most influential plant changes are identified to narrow the set of candidate plant changes. PLCD provides quantitative evidence to support strategic plant design modification decisions, including tradeoff analyses of redesign cost and requirement violation. In this article the design of a counterbalanced robotic manipulator is used to illustrate successful PLCD application. A baseline system design is obtained that exploits synergy between manipulator passive dynamics and control to minimize energy consumption for a specific pick-and-place task. The baseline design cannot meet requirements for a second pick-and-place task through control design changes alone. A limited set of plant design changes is identified using sensitivity analysis, and the PLCD result meets the new requirements at a cost significantly less than complete system redesign.


Author(s):  
John Gerdes ◽  
Hugh A. Bruck ◽  
Satyandra K. Gupta

The design of a flapping wing air vehicle is dependent on the interaction of drive motors and wings. In addition to the wing shape and spar arrangement, sizing and flapping kinematics affect vehicle performance due to wing deformation resulting from flapping motions. To achieve maximum payload and endurance, it is necessary to select a wing size and flapping rate that will ensure strong performance and compatibility with drive motor capabilities. Due to several conflicting trade-offs in system design, this is a challenging problem. We have conducted an experimental study of several wing sizes at multiple flapping rates to build an understanding of the design space and ensure acceptable vehicle performance. To support this study, we have designed a new custom test stand and data post-processing procedure. The results of this study are used to build a design methodology for flapping wing air vehicles with improved performance and to highlight system design challenges and strategies for mitigation. Using the methodology described in this paper, we have developed a new flapping wing air vehicle called the Robo Raven II. This vehicle uses larger wings than Robo Raven and flight tests have confirmed that Robo Raven II has a higher payload capacity.


2018 ◽  
Vol 220 ◽  
pp. 08002
Author(s):  
Linart Shabi ◽  
Juliane Weber ◽  
Jürgen Weber

Power losses in machine tools, e.g. during the standby, idle-, and manufacturing process, are converted into heat energy. This causes the machine frame and other machine components to heat up. As a result, the Tool Centre Point (TCP) of the machine tools is moved. The accuracy of the machine is thus reduced during manufacturing. The current cooling system design of machine tools is based on a centrally fixed pump supply that provides a constant cooling volume flow for cooling all the machine tool components. This does not correspond to the individual temperature development of the components, after all, the high temperature fluctuation arises and causes the thermo-elastic deformation of machine tools. The main objective of this paper is to highlight the deficit of the current concept of cooling systems and to present a simulative study on the different controls concepts of cooling systems for machine tools. The results depict that the new concepts under consideration have a large potential for better thermal behaviour and lower hydraulic performance compared to the current cooling system design. The simulation results show a stability of the components’ temperature profile as well as a decreased energy consumption of the cooling system.


Author(s):  
Michael E. Watson ◽  
Christina F. Rusnock ◽  
Michael E. Miller ◽  
John M. Colombi

Humans perform critical functions in nearly every system, making them vital to consider during system development. Human Systems Integration (HSI) would ideally permit the human’s impact on system performance to be effectively accounted for during the systems engineering (SE) process, but effective processes are often not applied, especially in the early design phases. Failure to properly account for human capabilities and limitations during system design may lead to unreasonable expectations of the human. The result is a system design that makes unrealistic assumptions about the human, leading to an overestimation of the human’s performance and thus the system’s performance. This research proposes a method of integrating HSI with SE that allows human factors engineers to apply Systems Modeling Language (SysML) and human performance simulation to describe and communicate human and system performance. Using these models, systems engineers can more fully understand the system’s performance to facilitate design decisions that account for the human. A scenario is applied to illustrate the method, in which a system developer seeks to redesign an example system, Vigilant Spirit, by incorporating system automation to improve overall system performance. The example begins by performing a task analysis through physical observation and analysis of human subjects’ data from 12 participants employing Vigilant Spirit. This analysis is depicted in SysML Activity and Sequence Diagrams. A human-in-the-loop experiment is used to study performance and workload effects of humans applying Vigilant Spirit to conduct simulated remotely-piloted aircraft surveillance and tracking missions. The results of the task analysis and human performance data gathered from the experiment are used to build a human performance model in the Improved Performance Research Integration Tool (IMPRINT). IMPRINT allows the analyst to represent a mission in terms of functions and tasks performed by the system and human, and then run a discrete event simulation of the system and human accomplishing the mission to observe the effects of defined variables on performance and workload. The model was validated against performance data from the human-subjects’ experiment. In the scenario, six different scan algorithms, which varied in terms of scan accuracy and speed, were simulated. These algorithms represented different potential system trades as factors such as various technologies and hardware architectures could influence algorithm accuracy and speed. These automation trades were incorporated into the system’s block definition (BDD), requirements, and parametric SysML diagrams. These diagrams were modeled from a systems engineer’s perspective; therefore they originally placed less emphasis on the human. The BDD portrayed the structural aspect of Vigilant Spirit, to include the operator, automation, and system software. The requirements diagram levied a minimum system-level performance requirement. The parametric diagram further defined the performance and specification requirements, along with the automation’s scan settings, through the use of constraints. It was unclear from studying the SysML diagrams which automation setting would produce the best results, or if any could meet the performance requirement. Existing system models were insufficient by themselves to evaluate these trades; thus, IMPRINT was used to perform a trade study to determine the effects of each of the automation options on overall system performance. The results of the trade study revealed that all six automation conditions significantly improved performance scores from the baseline, but only two significantly improved workload. Once the trade study identified the preferred alternative, the results were integrated into existing system diagrams. Originally system-focused, SysML diagrams were updated to reflect the results of the trade analysis. The result is a set of integrated diagrams that accounts for both the system and human, which may then be used to better inform system design. Using human performance- and workload-modeling tools such as IMPRINT to perform tradeoff analyses, human factors engineers can attain data about the human subsystem early in system design. These data may then be integrated into existing SysML diagrams applied by systems engineers. In so doing, additional insights into the whole system can be gained that would not be possible if human factors and systems engineers worked independently. Thus, the human is incorporated into the system’s design and the total system performance may be predicted, achieving a successful HSI process.


Sign in / Sign up

Export Citation Format

Share Document