Development of B1 and C1 Stress Indices for Trunnion Elbow Supports

1984 ◽  
Vol 106 (2) ◽  
pp. 166-171 ◽  
Author(s):  
D. K. Williams ◽  
G. D. Lewis

A finite element analysis of a trunnion elbow support is presented for the case of a long radius elbow subjected to an internal pressure loading. The stress results are categorized as average and linearly varying (through the thickness) stresses. The resulting stresses are then interpreted per Section III of the ASME Boiler and Pressure Vessel Code from which the primary and secondary (B1 and C1) pressure stress indices are developed. Several analysis were performed on various structural geometries in order to determine empirical relationships for the stress indices as a function of dimensionless ratios.

2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.


1996 ◽  
Vol 118 (4) ◽  
pp. 429-433
Author(s):  
H. Chen ◽  
J. Jin ◽  
J. Yu

Results from finite element analysis were used to show that the stress index kσ and the nondimensionalized highly stressed hub length kh of a flat head with a round corner in a pressure vessel subjected to internal pressure are functions of three dimensionless parameters: λ ≡ h/dt, η ≡ t/d, and ρ ≡ r/t. Approximate formulas for estimating kσ and kh from λ, η, and ρ p are given. The formulas can be used for determining a suitable fillet radius for a flat head in order to reduce the fabricating cost and to keep the stress intensity at the fillet under an acceptable limit.


2010 ◽  
Vol 2010.48 (0) ◽  
pp. 17-18
Author(s):  
Takuma Niiya ◽  
Shingo Okamoto ◽  
Osamu Miyauchi ◽  
Jae Hoon LEE ◽  
Mutsuya Yamamoto ◽  
...  

1978 ◽  
Vol 100 (2) ◽  
pp. 134-140 ◽  
Author(s):  
J. B. Truitt ◽  
P. P. Raju

This paper presents a comparative study between a three-dimensional and an axisymmetric finite-element analysis of a reactor pressure-vessel inlet nozzle subject to internal pressure. A quarter-symmetric section of the nozzle is modeled with a three-dimensional quadratic isoparametric finite element. This comparative study proves that the axisymmetric analysis is unconservative if based upon common axisymmetric modeling techniques. This inadequacy, for the PWR vessel inlet nozzle studied herein, can be offset by a modification of the modeling techniques, i.e., if the value of the radius of the equivalent spherical vessel is taken as 3.2 instead of, say, 2. The results of the three-dimensional finite-element analysis are also compared with those of a photo-elastic stress analysis and with the stress indices indicated by the ASME Section III Code. These additional comparisons, based upon a continuous distribution of hoop and tangential stress indices in both the transverse and longitudinal planes, shows good agreement between the three-dimensional finite-element and photoelastic analyses. The ASME Section III stress indices are found to be relatively conservative.


Author(s):  
Peter Carter ◽  
D. L. Marriott ◽  
M. J. Swindeman

This paper examines techniques for the evaluation of two kinds of structural imperfection, namely bulging subject to internal pressure, and out-of-round imperfections subject to external pressure, with and without creep. Comparisons between comprehensive finite element analysis and API 579 Level 2 techniques are made. It is recommended that structural, as opposed to material, failures such as these should be assessed with a structural model that explicitly represents the defect.


Author(s):  
Luiz T. Souza ◽  
David W. Murray

The paper presents results for finite element analysis of full-sized girth-welded specimens of line pipe and compares these results with the behavior exhibited by test specimens subjected to constant axial force, internal pressure and monotonically increasing curvatures. Recommendations for the ‘best’ type of analytical finite element model are given. Comparisons between the behavior predicted analytically and the observed behavior of the experimental test specimens are made. The mechanism of wrinkling is explained and the evolution of the deformed configurations for different wrinkling modes is examined. It is concluded that the analytical tools now available are sufficiently reliable to predict the behavior of pipe in a manner that was not previously possible and that this should create a new era for the design and assessment of pipelines if the technology is properly exploited by industry.


2017 ◽  
Vol 10 (25) ◽  
pp. 1-10
Author(s):  
Deepali Mathur ◽  
Mandar Sapre ◽  
Chintan Hingoo ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document