Dynamic Instability of a Cantilever Column Subjected to a Follower Force Including Thermomechanical Coupling Effect

1971 ◽  
Vol 38 (4) ◽  
pp. 839-846 ◽  
Author(s):  
R. C. Shieh

Within the context of the linear thermoelasticity theory, including thermomechanical coupling effect, the dynamic instability of equilibrium of an elastic cantilever column subjected to a follower-type force at its free end is studied. The surfaces of the column are either kept at constant temperature (isothermal) or thermally insulated (adiabatic). The boundary-value problem is first formulated, and then it is solved in general and in particular for the depth-length ratio much less than unity. Numerical results for the critical loads are given for various values of the thermal parameters. It is shown that, for a tangential follower force, the critical dynamic (oscillatory) instability load may be reduced through the coupling effect to approximately one half of that of the corresponding uncoupled isothermal problem (which was solved by Beck [14] in 1952). Analytical results are also obtained for the damping coefficients for both adiabatic and isothermal boundary conditions. From a comparison with available experiment for aluminum, it appears that material damping, at least for this material, is almost entirely due to thermomechanical coupling.

1975 ◽  
Vol 42 (2) ◽  
pp. 405-410 ◽  
Author(s):  
R.-C. Shieh

Within the framework of the theories of coupled linear thermoelasticity and Timoshenko beams, the vibration and thermoelastic damping (with emphasis on the transverse ones) of circular cross-section beams are studied. The governing equations are derived for the case of general mechanical boundary conditions and special thermal boundary conditions that follow the Newton surface heat transfer law. A variational principle governing the eigenfunctions associated with an eigenvalue is formulated. An exact solution, together with the thermoelastic damping coefficient, is obtained for the case of transverse vibrations of a simply supported beam with lateral surfaces thermally insulated and end surfaces kept at constant temperature. Numerical results, together with the discussion for the first two eigenvalues and the thermoelastic damping coefficients, are also presented.


2016 ◽  
Vol 11 (1) ◽  
pp. 38-52
Author(s):  
I.M. Utyashev ◽  
A.M. Akhtyamov

The paper discusses direct and inverse problems of oscillations of the string taking into account symmetrical characteristics of the external environment. In particular, we propose a modified method of finding natural frequencies using power series, and also the problem of identification of the boundary conditions type and parameters for the boundary value problem describing the vibrations of a string is solved. It is shown that to identify the form and parameters of the boundary conditions the two natural frequencies is enough in the case of a symmetric potential q(x). The estimation of the convergence of the proposed methods is done.


2020 ◽  
Vol 28 (5) ◽  
pp. 727-738
Author(s):  
Victor Sadovnichii ◽  
Yaudat Talgatovich Sultanaev ◽  
Azamat Akhtyamov

AbstractWe consider a new class of inverse problems on the recovery of the coefficients of differential equations from a finite set of eigenvalues of a boundary value problem with unseparated boundary conditions. A finite number of eigenvalues is possible only for problems in which the roots of the characteristic equation are multiple. The article describes solutions to such a problem for equations of the second, third, and fourth orders on a graph with three, four, and five edges. The inverse problem with an arbitrary number of edges is solved similarly.


2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 476
Author(s):  
Jiraporn Reunsumrit ◽  
Thanin Sitthiwirattham

In this paper, we propose sequential fractional delta-nabla sum-difference equations with nonlocal fractional delta-nabla sum boundary conditions. The Banach contraction principle and the Schauder’s fixed point theorem are used to prove the existence and uniqueness results of the problem. The different orders in one fractional delta differences, one fractional nabla differences, two fractional delta sum, and two fractional nabla sum are considered. Finally, we present an illustrative example.


Author(s):  
G. Patel ◽  
A. N. Nayak ◽  
A. K. L. Srivastava

The present paper reports an extensive study on dynamic instability characteristics of curved panels under linearly varying in-plane periodic loading employing finite element formulation with a quadratic isoparametric eight nodded element. At first, the influences of three types of linearly varying in-plane periodic edge loads (triangular, trapezoidal and uniform loads), three types of curved panels (cylindrical, spherical and hyperbolic) and six boundary conditions on excitation frequency and instability region are investigated. Further, the effects of varied parameters, such as shallowness parameter, span to thickness ratio, aspect ratio, and Poisson’s ratio, on the dynamic instability characteristics of curved panels with clamped–clamped–clamped–clamped (CCCC) and simply supported-free-simply supported-free (SFSF) boundary conditions under triangular load are studied. It is found that the above parameters influence significantly on the excitation frequency, at which the dynamic instability initiates, and the width of dynamic instability region (DIR). In addition, a comparative study is also made to find the influences of the various in-plane periodic loads, such as uniform, triangular, parabolic, patch and concentrated load, on the dynamic instability behavior of cylindrical, spherical and hyperbolic panels. Finally, typical design charts showing DIRs in non-dimensional forms are also developed to obtain the excitation frequency and instability region of various frequently used isotropic clamped spherical panels of any dimension, any type of linearly varying in-plane load and any isotropic material directly from these charts without the use of any commercially available finite element software or any developed complex model.


2008 ◽  
Vol 15 (S1) ◽  
pp. 568-572 ◽  
Author(s):  
Zhan-yu Yang ◽  
Ying-she Luo ◽  
Jian-xin Su ◽  
Yong-zhong Zhang ◽  
Xu-hua Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document