scholarly journals Discussion: “Buckling of a Long, Axially Compressed, Thin Cylindrical Shell With Random Initial Imperfections” (Van Slooten, R. A., and Soong, T. T., 1972, ASME J. Appl. Mech., 39, pp. 1066–1071)

1973 ◽  
Vol 40 (2) ◽  
pp. 634-635 ◽  
Author(s):  
J. C. Amazigo ◽  
B. Budiansky
1972 ◽  
Vol 39 (4) ◽  
pp. 1066-1071 ◽  
Author(s):  
R. A. Van Slooten ◽  
T. T. Soong

The effect of random geometric imperfections on the maximum load-carrying capacity of an axially compressed thin cylindrical shell is studied. Following a perturbation approach, equations are derived which relate the first and second-order statistics of the maximum load to the statistics of the initial imperfections. Assuming that the imperfections are represented by Gaussian stationary and ergodic random processes, it is shown that the mean maximum load is expressible in quadrature forms involving the power spectral density of the initial imperfection. Furthermore, the maximum load is seen to be equal to its mean value with probability one. A simple asymptotic formula for the maximum load is derived assuming the variance of the initial imperfection is small. In this case the critical load depends only upon the imperfection variance and the power spectral density at a given wave number. For the types of imperfections considered, it is found that random axisymmetric imperfections reduce the load-carrying capacity of the cylindrical shell more than nonaxisymmetric imperfections.


2011 ◽  
Vol 179-180 ◽  
pp. 212-219
Author(s):  
Guo Ping Wang ◽  
Hua Ling Chen ◽  
She Miao Qi ◽  
Jiu Hui Wu ◽  
Lie Yu

Distribution of static interference pressure between a thin-wall flexible cup and a flexible shaft fluctuates heavily along the axis of the cup and is quite different from pressure distribution of common interference styles. In this article, aiming at solving distribution of static interference pressure between a thin-wall flexible cup with much thicker bottom and a hollow flexible shaft, mechanical model and mathematical model of solving the problem were built based on classic thin shell theory. Special difference is that precise special solution of bending equation of thin cylindrical shell was used to substitute the special solution which is original from bending deformation of thin cylindrical shell in no moment status. And a brand new general solution, the relational expression between bending deformation of thin wall of the cup and distribution of the static interference pressure, was obtained. Then, a method used to solve the pressure distribution was presented by solving integral equation and applying superposition principle for the first time. Through using the method to solve an example and comparing calculated results with FEM results, it was proved that the method is correct and effective.


Sign in / Sign up

Export Citation Format

Share Document