Lower Bounds to the Gravest and All Higher Frequencies of Homogeneous Vibrating Plates of Arbitrary Shape

1975 ◽  
Vol 42 (4) ◽  
pp. 815-820 ◽  
Author(s):  
D. Pnueli

A method is presented by which lower bound can be calculated for the gravest and all higher frequencies of both clamped and simply supported plates of arbitrary shape. The results have the form of simple algebraic formulas which depend on the plate’s area only. Numerical examples are presented for rectangular, triangular, and elliptical configurations.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Tarald O. Kvålseth

As measures of interobserver agreement for both nominal and ordinal categories, Cohen’s kappa coefficients appear to be the most widely used with simple and meaningful interpretations. However, for negative coefficient values when (the probability of) observed disagreement exceeds chance-expected disagreement, no fixed lower bounds exist for the kappa coefficients and their interpretations are no longer meaningful and may be entirely misleading. In this paper, alternative measures of disagreement (or negative agreement) are proposed as simple corrections or modifications of Cohen’s kappa coefficients. The new coefficients have a fixed lower bound of −1 that can be attained irrespective of the marginal distributions. A coefficient is formulated for the case when the classification categories are nominal and a weighted coefficient is proposed for ordinal categories. Besides coefficients for the overall disagreement across categories, disagreement coefficients for individual categories are presented. Statistical inference procedures are developed and numerical examples are provided.


2021 ◽  
Vol 13 (5) ◽  
pp. 1
Author(s):  
Liao Ping

In this paper, we get a lower bound of the smallest singular value of an arbitrarily matrix A by the trace of H(A) and the Euclidean norm of H(A), where H(A) is Hermitian part of A, numerical examples show the e ectiveness of our results.


2020 ◽  
Vol 117 (28) ◽  
pp. 16181-16186
Author(s):  
Rocco Martinazzo ◽  
Eli Pollak

The Ritz upper bound to eigenvalues of Hermitian operators is essential for many applications in science. It is a staple of quantum chemistry and physics computations. The lower bound devised by Temple in 1928 [G. Temple,Proc. R. Soc. A Math. Phys. Eng. Sci.119, 276–293 (1928)] is not, since it converges too slowly. The need for a good lower-bound theorem and algorithm cannot be overstated, since an upper bound alone is not sufficient for determining differences between eigenvalues such as tunneling splittings and spectral features. In this paper, after 90 y, we derive a generalization and improvement of Temple’s lower bound. Numerical examples based on implementation of the Lanczos tridiagonalization are provided for nontrivial lattice model Hamiltonians, exemplifying convergence over a range of 13 orders of magnitude. This lower bound is typically at least one order of magnitude better than Temple’s result. Its rate of convergence is comparable to that of the Ritz upper bound. It is not limited to ground states. These results complement Ritz’s upper bound and may turn the computation of lower bounds into a staple of eigenvalue and spectral problems in physics and chemistry.


1974 ◽  
Vol 41 (3) ◽  
pp. 819-820
Author(s):  
D. Pnueli

A method is presented to compute a lower bound to the nth eigenvalue of the Helmholtz equation over three-dimensional regions. The shape of the regions is arbitrary and only their volume need be known.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Chong Wang ◽  
Gang Wang ◽  
Lixia Liu

<p style='text-indent:20px;'>In this paper, we establish sharp upper and lower bounds on the minimum <i>M</i>-eigenvalue via the extreme eigenvalue of the symmetric matrices extracted from elasticity <i>Z</i>-tensors without irreducible conditions. Based on the lower bound estimations for the minimum <i>M</i>-eigenvalue, we provide some checkable sufficient or necessary conditions for the strong ellipticity condition. Numerical examples are given to demonstrate the proposed results.</p>


1983 ◽  
Vol 5 (3) ◽  
pp. 25-32
Author(s):  
Vu Van The

New method for estimating the maximum deflections of pulse-loaded isotropic plastic structures had been discribed in [4]. Here this method is extended to anisotropic continua. The general relation for lower bounds on permanent displacement of beams, circular plates and cylindrical shells is derived. The lower bound on maximum deflection of simply supported circular orthotropic plastic plates is obtained.


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


2021 ◽  
Vol 13 (3) ◽  
pp. 1-21
Author(s):  
Suryajith Chillara

In this article, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which the polynomial computed at every node has a bound on the individual degree of r ≥ 1 with respect to all its variables (referred to as multi- r -ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing an explicit multilinear polynomial on n O (1) variables and degree d must have size at least ( n / r 1.1 ) Ω(√ d / r ) . This bound, however, deteriorates as the value of r increases. It is a natural question to ask if we can prove a bound that does not deteriorate as the value of r increases, or a bound that holds for a larger regime of r . In this article, we prove a lower bound that does not deteriorate with increasing values of r , albeit for a specific instance of d = d ( n ) but for a wider range of r . Formally, for all large enough integers n and a small constant η, we show that there exists an explicit polynomial on n O (1) variables and degree Θ (log 2 n ) such that any depth four circuit of bounded individual degree r ≤ n η must have size at least exp(Ω(log 2 n )). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).


2020 ◽  
Vol 30 (1) ◽  
pp. 175-192
Author(s):  
NathanaËl Fijalkow

Abstract This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. Motivated by the seminal paper of Rabin from 1963 introducing probabilistic automata, we study the (deterministic) state complexity of probabilistic languages and prove that probabilistic languages can have arbitrarily high deterministic state complexity. We then look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model.


Sign in / Sign up

Export Citation Format

Share Document