Dynamics of Multirigid-Body Systems

1978 ◽  
Vol 45 (4) ◽  
pp. 889-894 ◽  
Author(s):  
R. L. Huston ◽  
C. E. Passerello ◽  
M. W. Harlow

New and recently developed concepts and ideas useful in obtaining efficient computer algorithms for solving the equations of motion of multibody mechanical systems are presented and discussed. These ideas include the use of Euler parameters, Lagrange’s form of d’Alembert’s principle, quasi-coordinates, relative coordinates, and body connection arrays. The mechanical systems considered are linked rigid bodies with adjoining bodies sharing at least one point, and with no “closed loops” permitted. An explicit formulation of the equations of motion is presented.

Author(s):  
C Mellace ◽  
A P Lai ◽  
A Gugliotta ◽  
N Bosso ◽  
T Sinokrot ◽  
...  

One of the important issues associated with the use of trajectory coordinates in railroad vehicle dynamic algorithms is the ability of such coordinates to deal with braking and traction scenarios. In these algorithms, track coordinate systems that travel with constant speeds are introduced. As a result of using a prescribed motion for these track coordinate systems, the simulation of braking and/or traction scenarios becomes difficult or even impossible. The assumption of the prescribed motion of the track coordinate systems can be relaxed, thereby allowing the trajectory coordinates to be effectively used in modelling braking and traction dynamics. One of the objectives of this investigation is to demonstrate that by using track coordinate systems that can have an arbitrary motion, the trajectory coordinates can be used as the basis for developing computer algorithms for modelling braking and traction conditions. To this end, a set of six generalized trajectory coordinates is used to define the configuration of each rigid body in the railroad vehicle system. This set of coordinates consists of an arc length that represents the distance travelled by the body, and five relative coordinates that define the configuration of the body with respect to its track coordinate system. The independent non-linear state equations of motion associated with the trajectory coordinates are identified and integrated forward in time in order to determine the trajectory coordinates and velocities. The results obtained in this study show that when the track coordinate systems are allowed to have an arbitrary motion, the resulting set of trajectory coordinates can be used effectively in the study of braking and traction conditions. The results obtained using the trajectory coordinates are compared with the results obtained using the absolute Cartesian-coordinate-based formulations, which allow modelling braking and traction dynamics. In addition to this numerical validation of the trajectory coordinate formulation in braking scenarios, an experimental validation is also conducted using a roller test rig. The comparison presented in this study shows a good agreement between the obtained experimental and numerical results.


Author(s):  
B. J. Gilmore ◽  
R. J. Cipra

Abstract Due to changes in the kinematic constraints, many mechanical systems are described by discontinuous equations of motion. This paper addresses those changes in the kinematic constraints which are caused by planar bodies contacting and separating. A strategy to automatically predict and detect the kinematic constraint changes, which are functions of the system dynamics, is presented in Part I. The strategy employs the concepts of point to line contact kinematic constraints, force closure, and ray firing together with the information provided by the rigid bodies’ boundary descriptions, state variables, and reaction forces to characterize the kinematic constraint changes. Since the strategy automatically predicts and detects constraint changes, it is capable of simulating mechanical systems with unpredictable or unforeseen changes in topology. Part II presents the implementation of the characterizations into a simulation strategy and presents examples.


Author(s):  
Andrew J. Sinclair ◽  
John E. Hurtado

The Cayley transform and the Cayley–transform kinematic relationships are an important and fascinating set of results that have relevance in N –dimensional orientations and rotations. In this paper these results are used in two significant ways. First, they are used in a new derivation of the matrix form of the generalized Euler equations of motion for N –dimensional rigid bodies. Second, they are used to intimately relate the motion of general mechanical systems to the motion of higher–dimensional rigid bodies. This approach can be used to describe an enormous variety of systems, one example being the representation of general motion of an N –dimensional body as pure rotations of an ( N + 1)–dimensional body.


Author(s):  
Firdaus E Udwadia ◽  
Phailaung Phohomsiri

This paper gives the general constrained Poincaré equations of motion for mechanical systems subjected to holonomic and/or nonholonomic constraints that may or may not satisfy d'Alembert's principle at each instant of time. It also extends Gauss's principle of least constraint to include quasi-accelerations when the constraints are ideal, thereby expanding the compass of this principle considerably. The new equations provide deeper insights into the dynamics of multi-body systems and point to new ways for controlling them.


2000 ◽  
Vol 68 (3) ◽  
pp. 462-467 ◽  
Author(s):  
F. E. Udwadia ◽  
R. E. Kalaba

Since its inception about 200 years ago, Lagrangian mechanics has been based upon the Principle of D’Alembert. There are, however, many physical situations where this confining principle is not suitable, and the constraint forces do work. To date, such situations are excluded from general Lagrangian formulations. This paper releases Lagrangian mechanics from this confinement, by generalizing D’Alembert’s principle, and presents the explicit equations of motion for constrained mechanical systems in which the constraints are nonideal. These equations lead to a simple and new fundamental view of Lagrangian mechanics. They provide a geometrical understanding of constrained motion, and they highlight the simplicity with which Nature seems to operate.


1982 ◽  
Vol 104 (4) ◽  
pp. 785-791 ◽  
Author(s):  
P. E. Nikravesh ◽  
I. S. Chung

This paper presents a computer-based method for formulation and efficient solution of nonlinear, constrained differential equations of motion for spatial dynamic analysis of mechanical systems. Nonlinear holonomic constraint equations and differential equations of motion are written in terms of a maximal set of Cartesian generalized coordinates, three translational and four rotational coordinates for each rigid body in the system, where the rotational coordinates are the Euler parameters. Euler parameters, in contrast to Euler angles or any other set of three rotational generalized coordinates, have no critical singular cases. The maximal set of generalized coordinates facilitates the general formulation of constraints and forcing functions. A Gaussian elimination algorithm with full pivoting decomposes the constraint Jacobian matrix, identifies dependent variables, and constructs an influence coefficient matrix relating variations in dependent and indpendent variables. This information is employed to numerically construct a reduced system of differential equations of motion whose solution yields the total system dynamic response. A numerical integration algorithm with positive-error control, employing a predictor-corrector algorithm with variable order and step size, integrates for only the independent variables, yet effectively determines dependent variables.


1985 ◽  
Vol 107 (3) ◽  
pp. 358-365 ◽  
Author(s):  
P. E. Nikravesh ◽  
R. A. Wehage ◽  
O. K. Kwon

This paper presents useful and interesting identities between Euler parameters and their time derivatives. Using these identities, kinematic constraints and equations of motion for constrained mechanical systems are derived. These equations can be developed into a computer program to systematically generate all of the necessary equations to model mechanical systems. The compact form of these equations makes it possible to develop a general-purpose computer program for dynamic analysis of mechanical systems suitable for operation on small computers with limited memory space.


2002 ◽  
Vol 69 (3) ◽  
pp. 335-339 ◽  
Author(s):  
F. E. Udwadia ◽  
R. E. Kalaba

This paper presents the general form of the explicit equations of motion for mechanical systems. The systems may have holonomic and/or nonholonomic constraints, and the constraint forces may or may not satisfy D’Alembert’s principle at each instant of time. The explicit equations lead to new fundamental principles of analytical mechanics.


1986 ◽  
Vol 108 (2) ◽  
pp. 176-182 ◽  
Author(s):  
S. S. Kim ◽  
M. J. Vanderploeg

This paper presents a new formulation for the equations of motion of interconnected rigid bodies. This formulation initially uses Cartesian coordinates to define the position of the system, the kinematic joints between bodies, and forcing functions on and between bodies. This makes initial system definition straightforward. The equations of motion are then derived in terms of relative joint coordinates through the use of a velocity transformation matrix. The velocity transformation matrix relates relative coordinates to Cartesian coordinates. It is derived using kinematic relationships for each joint type and graph theory for identifying the system topology. By using relative coordinates, the equations of motion are efficiently integrated. Use of both Cartesian and relative coordinates produces an efficient set of equations without loss of generality. The algorithm just described is implemented in a general purpose computer program. Examples are used to demonstrate the generality and efficiency of the algorithms.


Sign in / Sign up

Export Citation Format

Share Document