Experimental and numerical investigation of railroad vehicle braking dynamics

Author(s):  
C Mellace ◽  
A P Lai ◽  
A Gugliotta ◽  
N Bosso ◽  
T Sinokrot ◽  
...  

One of the important issues associated with the use of trajectory coordinates in railroad vehicle dynamic algorithms is the ability of such coordinates to deal with braking and traction scenarios. In these algorithms, track coordinate systems that travel with constant speeds are introduced. As a result of using a prescribed motion for these track coordinate systems, the simulation of braking and/or traction scenarios becomes difficult or even impossible. The assumption of the prescribed motion of the track coordinate systems can be relaxed, thereby allowing the trajectory coordinates to be effectively used in modelling braking and traction dynamics. One of the objectives of this investigation is to demonstrate that by using track coordinate systems that can have an arbitrary motion, the trajectory coordinates can be used as the basis for developing computer algorithms for modelling braking and traction conditions. To this end, a set of six generalized trajectory coordinates is used to define the configuration of each rigid body in the railroad vehicle system. This set of coordinates consists of an arc length that represents the distance travelled by the body, and five relative coordinates that define the configuration of the body with respect to its track coordinate system. The independent non-linear state equations of motion associated with the trajectory coordinates are identified and integrated forward in time in order to determine the trajectory coordinates and velocities. The results obtained in this study show that when the track coordinate systems are allowed to have an arbitrary motion, the resulting set of trajectory coordinates can be used effectively in the study of braking and traction conditions. The results obtained using the trajectory coordinates are compared with the results obtained using the absolute Cartesian-coordinate-based formulations, which allow modelling braking and traction dynamics. In addition to this numerical validation of the trajectory coordinate formulation in braking scenarios, an experimental validation is also conducted using a roller test rig. The comparison presented in this study shows a good agreement between the obtained experimental and numerical results.

Author(s):  
Claudio Mellace ◽  
Antonio Gugliotta ◽  
Tariq Sinokrot ◽  
Ahmed A. Shabana

One of the important issues associated with the use of the trajectory coordinates in railroad vehicle simulations is the ability of such coordinates in dealing with braking and traction scenarios. In existing specialized railroad computer algorithms, the trajectory coordinates instead of the absolute Cartesian coordinates are often used. In these algorithms, track coordinate systems that travel with constant speeds are employed to define the configuration of the components in railroad vehicle systems. As the result of using a prescribed motion for these track coordinate systems, the simulation of braking and/or traction scenarios becomes difficult or even impossible, as reported in recent investigations [2]. The assumption of the prescribed motion of the track coordinate systems can be relaxed, thereby allowing the trajectory coordinate systems to be effectively used in modeling braking and traction scenarios. It is the objective of this investigation to demonstrate that by using track coordinate systems that can have an arbitrary motion, the trajectory coordinates can be used as the basis for developing computer algorithms for modeling braking and traction scenarios. To this end, a set of six generalized trajectory coordinates is used to define the configuration of each rigid body in the railroad vehicle system. This set of coordinates consists of one absolute coordinate, which is an arc length that represents the distance traveled by the body, and five relative coordinates. The arc length parameter defines the location of the origin and the orientation of a track coordinate system that follows the motion of the body. The other five relative coordinates are two translations that define the position of the origin of body coordinate system with respect to the track coordinate system in directions lateral and normal to the track, and three Euler angles that define the orientation of the body coordinate system with respect to its track coordinate system. The independent state equations of motion associated with the trajectory coordinates are identified and integrated forward in time in order to determine the trajectory coordinates and velocities. The results obtained in this study show that when the track coordinates systems are allowed to have an arbitrary motion, the resulting set of trajectory coordinates can be used effectively in the study of braking and traction conditions. The numerical examples presented in this paper include two different vehicle models subjected to several braking conditions. The results obtained are compared with the results obtained using the absolute Cartesian coordinate based formulations which allow modeling braking and traction scenarios.


1978 ◽  
Vol 45 (4) ◽  
pp. 889-894 ◽  
Author(s):  
R. L. Huston ◽  
C. E. Passerello ◽  
M. W. Harlow

New and recently developed concepts and ideas useful in obtaining efficient computer algorithms for solving the equations of motion of multibody mechanical systems are presented and discussed. These ideas include the use of Euler parameters, Lagrange’s form of d’Alembert’s principle, quasi-coordinates, relative coordinates, and body connection arrays. The mechanical systems considered are linked rigid bodies with adjoining bodies sharing at least one point, and with no “closed loops” permitted. An explicit formulation of the equations of motion is presented.


1979 ◽  
Vol 81 ◽  
pp. 69-72 ◽  
Author(s):  
Manabu Yuasa ◽  
Gen'ichiro Hori

A new approach to the planetary theory is examined under the following procedure: 1) we use a canonical perturbation method based on the averaging principle; 2) we adopt Charlier's canonical relative coordinates fixed to the Sun, and the equations of motion of planets can be written in the canonical form; 3) we adopt some devices concerning the development of the disturbing function. Our development can be applied formally in the case of nearly intersecting orbits as the Neptune-Pluto system. Procedure 1) has been adopted by Message (1976).


Author(s):  
Андрей Геннадьевич Деменков ◽  
Геннадий Георгиевич Черных

С применением математической модели, включающей осредненные уравнения движения и дифференциальные уравнения переноса нормальных рейнольдсовых напряжений и скорости диссипации, выполнено численное моделирование эволюции безымпульсного закрученного турбулентного следа с ненулевым моментом количества движения за телом вращения. Получено, что начиная с расстояний порядка 1000 диаметров от тела течение становится автомодельным. На основе анализа результатов численных экспериментов построены упрощенные математические модели дальнего следа. Swirling turbulent jet flows are of interest in connection with the design and development of various energy and chemical-technological devices as well as both study of flow around bodies and solving problems of environmental hydrodynamics, etc. An interesting example of such a flow is a swirling turbulent wake behind bodies of revolution. Analysis of the known works on the numerical simulation of swirling turbulent wakes behind bodies of revolution indicates lack of knowledge on the dynamics of the momentumless swirling turbulent wake. A special case of the motion of a body with a propulsor whose thrust compensates the swirl is studied, but there is a nonzero integral swirl in the flow. In previous works with the participation of the authors, a numerical simulation of the initial stage of the evolution of a swirling momentumless turbulent wake based on a hierarchy of second-order mathematical models was performed. It is shown that a satisfactory agreement of the results of calculations with the available experimental data is possible only with the use of a mathematical model that includes the averaged equations of motion and differential equations for the transfer of normal Reynolds stresses along the rate of dissipation. In the present work, based on the above mentioned mathematical model, a numerical simulation of the evolution of a far momentumless swirling turbulent wake with a nonzero angular momentum behind the body of revolution is performed. It is shown that starting from distances of the order of 1000 diameters from the body the flow becomes self-similar. Based on the analysis of the results of numerical experiments, simplified mathematical models of the far wake are constructed. The authors dedicate this work to the blessed memory of Vladimir Alekseevich Kostomakha.


Author(s):  
X. Tong ◽  
B. Tabarrok

Abstract In this paper the global motion of a rigid body subject to small periodic torques, which has a fixed direction in the body-fixed coordinate frame, is investigated by means of Melnikov’s method. Deprit’s variables are introduced to transform the equations of motion into a form describing a slowly varying oscillator. Then the Melnikov method developed for the slowly varying oscillator is used to predict the transversal intersections of stable and unstable manifolds for the perturbed rigid body motion. It is shown that there exist transversal intersections of heteroclinic orbits for certain ranges of parameter values.


2012 ◽  
Vol 12 (06) ◽  
pp. 1250049 ◽  
Author(s):  
A. RASTI ◽  
S. A. FAZELZADEH

In this paper, multibody dynamic modeling and flutter analysis of a flexible slender vehicle are investigated. The method is a comprehensive procedure based on the hybrid equations of motion in terms of quasi-coordinates. The equations consist of ordinary differential equations for the rigid body motions of the vehicle and partial differential equations for the elastic deformations of the flexible components of the vehicle. These equations are naturally nonlinear, but to avoid high nonlinearity of equations the elastic displacements are assumed to be small so that the equations of motion can be linearized. For the aeroelastic analysis a perturbation approach is used, by which the problem is divided into a nonlinear flight dynamics problem for quasi-rigid flight vehicle and a linear extended aeroelasticity problem for the elastic deformations and perturbations in the rigid body motions. In this manner, the trim values that are obtained from the first problem are used as an input to the second problem. The body of the vehicle is modeled with a uniform free–free beam and the aeroelastic forces are derived from the strip theory. The effect of some crucial geometric and physical parameters and the acting forces on the flutter speed and frequency of the vehicle are investigated.


2018 ◽  
Author(s):  
Virginie Crollen ◽  
Tiffany Spruyt ◽  
Pierre Mahau ◽  
Roberto Bottini ◽  
Olivier Collignon

Recent studies proposed that the use of internal and external coordinate systems may be more flexible in congenitally blind when compared to sighted individuals. To investigate this hypothesis further, we asked congenitally blind and sighted people to perform, with the hands uncrossed and crossed over the body midline, a tactile TOJ and an auditory Simon task. Crucially, both tasks were carried out under task instructions either favoring the use of an internal (left vs. right hand) or an external (left vs. right hemispace) frame of reference. In the internal condition of the TOJ task, our results replicated previous findings (Röder et al., 2004) showing that hand crossing only impaired sighted participants’ performance, suggesting that blind people did not activate by default a (conflicting) external frame of reference. However, under external instructions, a decrease of performance was observed in both groups, suggesting that even blind people activated an external coordinate system in this condition. In the Simon task, and in contrast with a previous study (Roder et al., 2007), both groups responded more efficiently when the sound was presented from the same side of the response (‘‘Simon effect’’) independently of the hands position. This was true under the internal and external conditions, therefore suggesting that blind and sighted by default activated an external coordinate system in this task. All together, these data comprehensively demonstrate how visual experience shapes the default weight attributed to internal and external coordinate systems for action and perception depending on task demand.


Author(s):  
Pawel Gusin ◽  
Andy Augousti ◽  
Filip Formalik ◽  
Andrzej Radosz

A black hole in a Schwarzschild spacetime is considered. A transformation is proposed that describes the relationship between the coordinate systems exterior and interior to an event horizon. Application of this transformation permits considerations of the (a)symmetry of a range of phenomena taking place on both sides of the event horizon. The paper investigates two distinct problems of a uniformly accelerated particle. In one of these, although the equations of motion are the same in the regions on both sides, the solutions turn out to be very different. This manifests the differences of the properties of these two ranges.


Sign in / Sign up

Export Citation Format

Share Document