Analysis, Design, and Optimization of High Speed Vehicle Suspensions Using State Variable Techniques

1974 ◽  
Vol 96 (2) ◽  
pp. 193-203 ◽  
Author(s):  
J. K. Hedrick ◽  
G. F. Billington ◽  
D. A. Dreesbach

This article applies state variable techniques to high speed vehicle suspension design. When a reasonably complex suspension model is treated, the greater adaptability of state variable techniques to digital computer application makes it more attractive than the commonly used integral transform method. A vehicle suspension model is developed, state variable techniques are applied, numerical methods are presented, and, finally, an optimization algorithm is chosen to select suspension parameters. A fairly complete bibliography is included in each of these areas. The state variable technique is illustrated in the solution of two suspension optimization problems. First, the vertical plane suspension of a high speed vehicle subject to guideway and aerodynamic inputs will be analyzed. The vehicle model, including primary and secondary suspension systems, and subject to both heave and pitch motions, has thirteen state variables. Second, the horizontal plane suspension of a high speed vehicle subject to guideway and lateral aerodynamic inputs is analyzed. This model also has thirteen state variables. The suspension parameters of both these models are optimized. Numerical results are presented for a representative vehicle, showing time response, mean square values, optimized suspension parameters, system eigenvalues, and acceleration spectral densities.

1971 ◽  
Vol 93 (1) ◽  
pp. 25-34 ◽  
Author(s):  
W. S. Chiu ◽  
R. G. Smith ◽  
D. N. Wormley

Modal analysis techniques are used to study the dynamic interactions between a one-dimensional high speed ground transport vehicle model and a guideway consisting of multiple independent spans resting freely on rigid discrete supports. The study includes an evaluation of the effects of variations in the fundamental vehicle and guideway parameters on span maximum dynamic deflections and vehicle heave accelerations. Results of the study indicate that vehicle-guideway dynamic interactions strongly influence both vehicle suspension and guideway span design. For the range of parameters of interest in high speed systems (200–300 mph), guideway span dynamic to static deflection and stress ratios, or impact factors, may approach values of 2.0 for a single vehicle passage, and vehicle heave accelerations may exceed the levels of 0.05g desired for good ride quality unless very strong constraints are placed upon vehicle suspension requirements and guideway stiffness, weight, and span length specifications. System design guidelines are presented in the form of parametric plots in which the values of vehicle and guideway parameters required to limit maximum vehicle heave accelerations and guideway dynamic deflections are specified.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 219 ◽  
Author(s):  
Alberto Sanchez ◽  
Elías Todorovich ◽  
Angel de Castro

As the performance of digital devices is improving, Hardware-In-the-Loop (HIL) techniques are being increasingly used. HIL systems are frequently implemented using FPGAs (Field Programmable Gate Array) as they allow faster calculations and therefore smaller simulation steps. As the simulation step is reduced, the incremental values for the state variables are reduced proportionally, increasing the difference between the current value of the state variable and its increments. This difference can lead to numerical resolution issues when both magnitudes cannot be stored simultaneously in the state variable. FPGA-based HIL systems generally use 32-bit floating-point due to hardware and timing restrictions but they may suffer from these resolution problems. This paper explores the limits of 32-bit floating-point arithmetics in the context of hardware-in-the-loop systems, and how a larger format can be used to avoid resolution problems. The consequences in terms of hardware resources and running frequency are also explored. Although the conclusions reached in this work can be applied to any digital device, they can be directly used in the field of FPGAs, where the designer can easily use custom floating-point arithmetics.


Author(s):  
Wang Xin ◽  
Yan Jie ◽  
Zhang Yerong

This work provides an attitude solution for a high-speed vehicle using plasma aerodynamic control called “plasma virtual flap” manipulation. This paper describes the concept of using plasma active control as plasma virtual flap for off-design attitude manipulation problem. Design of an attitude controller considering plasma aerodynamic effects for the high-speed vehicle is presented. The aerodynamic lift and drag force features in the high speed, long duration cruise flight with plasma actuator effect are introduced, where the estimated models and attitude controller are established. This paper documents the development and capabilities of plasma virtual flap attitude control authority. Simulation results are presented to exhibit the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document