Kinematic Analysis of Spatial Mechanisms by Means of Screw Coordinates. Part 2—Analysis of Spatial Mechanisms

1971 ◽  
Vol 93 (1) ◽  
pp. 67-73 ◽  
Author(s):  
M. S. C. Yuan ◽  
F. Freudenstein ◽  
L. S. Woo

The basic concepts of screw coordinates described in Part I are applied to the numerical kinematic analysis of spatial mechanisms. The techniques are illustrated with reference to the displacement, velocity, and static-force-and-torque analysis of a general, single-degree-of-freedom spatial mechanism: a seven-link mechanism with screw pairs (H)7. By specialization the associated computer program is capable of analyzing many other single-loop spatial mechanisms. Numerical examples illustrate the results.

2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Wen-Yeuan Chung

This article presents a new spatial mechanism with single degree of freedom (DOF) for three-dimensional path generation. The path can be defined by prescribing at most seven precision points. The moving platform of the mechanism is supported by a U-R (universal-revolute) leg and two S–S (spherical–spherical) legs. The driving unit is the first axis of the universal pair. The U-R leg is synthesized first with the problem of order defects being considered. Precision points then lead to prescribed poses of the moving platform. Two S–S legs are then synthesized to meet these poses. This spatial mechanism with a given input is analogous to a planar kinematic chain so that all possible configurations of the spatial mechanism can be constructed. A strategy consisting of three stages for evaluating branch defects is developed with the aid of the characteristic of double configurations and the technique of coding three constituent four-bar linkages. Two numerical examples are presented to illustrate the design, the evaluation of defects, and the performance of the mechanism.


2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Gregory H. Teichert ◽  
Quentin T. Aten ◽  
Sandra H. Burnett ◽  
Larry L. Howell ◽  
Brian D. Jensen

Many transgenic animal production techniques require egg cells to be held in place during injection of the transgene. This paper presents a micro-electromechanical systems (MEMS) mechanism that provides cell support, self-centers the cell, and requires a single linear input for actuation. This restraint device uses an innovative spatial mechanism, termed a cylindrical mechanism. The kinematics and design of the restraint are discussed. The MEMS cell restraints were fabricated using a surface micromachining process, after which the mechanism’s cell support, self-centering of the cell, and motion were verified.


Author(s):  
Sio-Hou Lei ◽  
Ying-Chien Tsai

Abstract A method for synthesizing the types of spatial as well as planar mechanisms is expressed in this paper by using the concept of phase diagram in metallurgy. The concept represented as a type synthesis technique is applied to (a) planar mechanisms with n degrees of freedom and simple loop, (b) spatial mechanisms with single degree of freedom and simple loop, to enumerate all the possible mechanisms with physically realizable kinematic pairs. Based on the technique described, a set of new reciprocating mechanisms is generated as a practical application.


2018 ◽  
Vol 147 ◽  
pp. 05003
Author(s):  
Heri Setiawan ◽  
Muslim Muin

When a ship is moving through another ship moored nearby, hydrodynamic interactions between these ships result in movements of the moored vessel. The movement may occur as surge, sway, and/or yaw. When a ship is passing a moored vessel parallelly, this effect will give a dominant lateral force on the moored ship and response from this phenomenon will appear in a certain time. Only dynamic response due to sway force is considered in this study, the sway force shall be absorb by the breasting dolphin. 40,000 DWT shall be moored to the breasting dolphin. Three passing ships size are considered, the breasting dolphin shall be modeled as a single degree of freedom model. This model will be subjected to a force caused by parallel passing ship. The model is assumed to be in a state of quiet water, this assumption is taken so that the fluid does not provide additional force on the model. The SDOF system shall be analyzed using a computer program designed to solve an ordinary differential equation.


1975 ◽  
Vol 97 (2) ◽  
pp. 739-747 ◽  
Author(s):  
Dilip Kohli ◽  
A. H. Soni

A new, unified method is proposed and demonstrated to conduct kinematic analysis of spatial mechanisms involving revolute, cylindrical, prismatic, helical and spherical pairs. The paper derives the equations for the successive screw displacements, and the equations for pair constraints. Using these equations, closed-form relationships for displacement, velocity and acceleration of single or multi-loop spatial mechanisms are obtained by (1) breaking the mechanism at a critical joint (2) unfolding the mechanism along a straight line (3) providing successive screw displacement at each joint and (4) reassembling the mechanism to form a closed loop. The application of this newly developed approach is demonstrated by considering an example of a two-loop spatial mechanism with revolute, cylindrical and spherical pairs.


1981 ◽  
Vol 103 (4) ◽  
pp. 823-830 ◽  
Author(s):  
M. O. M. Osman ◽  
B. M. Bahgat ◽  
R. V. Dukkipati

A useful method for the kinematic analysis of spatial mechanisms is presented. For the purpose of kinematic analysis, the mechanism is treated as a consist of a number of master train components. For each master train component, geometric constitutive equations for use in kinematic analysis of mechanisms are developed. The kinematic analysis of all train components consisting the mechanism are performed as parts of the master components using a mathematical programming procedure. The analysis is followed in sequence from one train component to another as they form the entire mechanism. Numerical examples are presented to illustrate the proposed technique.


Author(s):  
D. E. G. Crutcher

The paper deals with a computer program that has been developed to study the dynamic behaviour of poppet valve mechanisms. A theoretical analysis is performed on a single mass, single degree of freedom system subjected to internal and external viscous damping and Coulomb friction, representing a valve mechanism with flexible overhead linkage. Measurements have been made on engines so that computed and experimental results could be compared in order to test the program. The effect on performance of varying the dynamic parameters of valve mechanisms is investigated with the computer program.


Author(s):  
Pat Blanchet ◽  
Harvey Lipkin

Abstract A new methodology is presented for the design of planar vibration absorbers. For the most part, previous methods have dealt with systems constrained to a single degree-of-freedom and require the absorber to be along the line of the exciting force. The presented methodology is more versatile and allows the placement of the absorber as a design freedom. Three specific design techniques for force and couple excitations are detailed along with numerical examples illustrating the results.


Author(s):  
Chien H. Chiang ◽  
Wei Hua Chieng ◽  
David A. Hoeltzel

Abstract Mathematical models that have been employed to synthesize spatial mechanisms for rigid body guidance have been found to be too complicated to implement in practical applications, especially for four-position guidance synthesis. This paper describes simple analytical methods for synthesizing single degree-of-freedom spatial mechanisms having two independent loops for four precision positions. In addition, prescribed timing has been simultaneously considered for several spatial mechanisms.


2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Robert J. Lang ◽  
Nathan Brown ◽  
Brian Ignaut ◽  
Spencer Magleby ◽  
Larry Howell

Abstract We present new families of thick origami mechanisms that achieve rigid foldability and parallel stacking of panels in the flat-folded state using linkages for some or all of the hinges between panels. A degree-four vertex results in a multiloop eight-bar spatial mechanism that can be analyzed as separate linkages. The individual linkages are designed so that they introduce offsets perpendicular to the panels that are mutually compatible around each vertex. This family of mechanisms offers the unique combination of planar unfolded state, parallel-stacked panels in the flat-folded state and kinematic single-degree-of-freedom motion from the flat-unfolded to the flat-folded state. The paper develops the mathematics defining the necessary offsets, beginning with a symmetric bird’s-foot vertex, and then shows that the joints can be developed for asymmetric flat-foldable systems. Although in the general case there is no guarantee of achieving perfect kinematic motion, we show that for many cases of interest, the deviation is a tiny fraction of the plate thickness. Mechanical realizations of several examples are presented.


Sign in / Sign up

Export Citation Format

Share Document