Boiling-Curve Measurements From a Controlled Heat-Transfer Process

1971 ◽  
Vol 93 (4) ◽  
pp. 408-412 ◽  
Author(s):  
W. C. Peterson ◽  
M. G. Zaalouk

Feedback has been introduced around a boiling heat-transfer process in such a way that stable operation of the process has been obtained in all boiling regions including the transition region, in which, as is well known, the process itself is unstable. This system makes it possible to obtain much new information concerning both the steady-state and dynamic characteristics of boiling heat-transfer processes. Pool-boiling data which were obtained by the use of this system are presented. Accurate measurements of heater voltage and current were obtained by a new technique involving the use of digital instruments. These data are presented in the form of plotted experimental points in the nucleate, transition, and film boiling regions. The new measurement technique is described. Values of n in the equation q/As = CTdn are determined for all three boiling regions, where q = Btu/hr, As is heater surface area, and Td is temperature difference between heater surface and ambient liquid. The ambient liquid is distilled water maintained at saturation temperature under atmospheric pressure.

Author(s):  
A.V. Attetkov ◽  
I.K. Volkov ◽  
K.A. Gaydaenko

The paper considers the problem of determining temperature field parameters in a radiation-trans-parent isotropic solid body containing an absorptive inclusion, when the system features phase transitions. We identify sufficient conditions, meeting which ensures the possibility of self-similar heat transfer process taking place in the system under con-sideration. We qualitatively investigated physical properties of the self-similar process under study and determined its specifics. We provide a theoretical validation of implementing a thermostating mode of the moving phase transition boundary in the heat transfer process investigated


Author(s):  
Qingtai Xiao ◽  
Wen Luo ◽  
Junwei Huang ◽  
Jianxin Xu ◽  
Hua Wang

By bringing two immiscible fluids at different temperatures into a direct contact heat exchanger (DCHE), bubble swarms are produced in the dual-loop ORC direct contact boiling heat transfer process. The aim of this paper is to make effort to explore the interplay between mixing state quality and heat transfer performance of fluids in the DCHE. Through flow visualization of this mixing process, a simple image analysis technique is introduced to represent the formation and evolution of vapor around the injected coolant droplets. Description of the boiling heat transfer process is here achieved by average volumetric heat transfer coefficient (VHTC). Experimental results attest that the proposed mixing index is powerful and sufficient compared with the Betti numbers method for the mixing quality quantification of bubbles inside DCHE. The synergistic association between the fluids mixing process and the heat transfer process is investigated by statistical regression model of new mixing index and VHTC. The contributions, including the data from monitoring practice in ORC heat transfer system and the proposed way, are presented to delve into the transient behaviors comparison of various fluids mixing and heat transfer processes conveniently.


2020 ◽  
Vol 786 (11) ◽  
pp. 30-34
Author(s):  
A.M. IBRAGIMOV ◽  
◽  
L.Yu. GNEDINA ◽  

This work is part of a series of articles under the general title The structural design of the blast furnace wall from efficient materials [1–3]. In part 1, Problem statement and calculation prerequisites, typical multilayer enclosing structures of a blast furnace are considered. The layers that make up these structures are described. The main attention is paid to the lining layer. The process of iron smelting and temperature conditions in the characteristic layers of the internal environment of the furnace is briefly described. Based on the theory of A.V. Lykov, the initial equations describing the interrelated transfer of heat and mass in a solid are analyzed in relation to the task – an adequate description of the processes for the purpose of further rational design of the multilayer enclosing structure of the blast furnace. A priori the enclosing structure is considered from a mathematical point of view as the unlimited plate. In part 2, Solving boundary value problems of heat transfer, boundary value problems of heat transfer in individual layers of a structure with different boundary conditions are considered, their solutions, which are basic when developing a mathematical model of a non-stationary heat transfer process in a multi-layer enclosing structure, are given. Part 3 presents a mathematical model of the heat transfer process in the enclosing structure and an algorithm for its implementation. The proposed mathematical model makes it possible to solve a large number of problems. Part 4 presents a number of examples of calculating the heat transfer process in a multilayer blast furnace enclosing structure. The results obtained correlate with the results obtained by other authors, this makes it possible to conclude that the new mathematical model is suitable for solving the problem of rational design of the enclosing structure, as well as to simulate situations that occur at any time interval of operation of the blast furnace enclosure.


Sign in / Sign up

Export Citation Format

Share Document