Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets with Crossflow of Spent Air

1979 ◽  
Vol 101 (3) ◽  
pp. 526-531 ◽  
Author(s):  
D. E. Metzger ◽  
L. W. Florschuetz ◽  
D. I. Takeuchi ◽  
R. D. Behee ◽  
R. A. Berry

Heat transfer characteristics were measured for two-dimensional arrays of jets impinging on a surface parallel to the jet orifice plate. The impinging flow was constrained to exit in a single direction along the channel formed by the jet plate and the heat transfer surface. Both mean Nusselt numbers and streamwise Nusselt number profiles are presented as a function of Reynolds number and geometric parameters. The results show that significant periodic variations occur in the streamwise Nusselt number profiles, persisting downstream for at least ten rows of jet holes. Both channel height and hole spacing can have a significant effect on the streamwise profiles, smoothed across the periodic variations. Where significant differences exist, inline hole patterns provide better heat transfer than staggered ones, particularly downstream. These and other effects of the geometric parameters are presented and discussed.

1980 ◽  
Vol 102 (1) ◽  
pp. 132-137 ◽  
Author(s):  
L. W. Florschuetz ◽  
R. A. Berry ◽  
D. E. Metzger

Heat transfer characteristics were measured for inline and staggered arrays of circular jets impinging on a surface parallel to the jet orifice plate. The impinging flow was constrained to exit in a single direction along the channel formed by the jet plate and the heat transfer surface. In this configuration the air discharged from upstream transverse rows of jet holes imposes a crossflow of increasing magnitude on the succeeding downstream jet rows. Streamwise heat transfer coefficient profiles were determined for a streamwise resolution of one-third the streamwise hole spacing, utilizing a specially constructed test surface. These profiles are characterized by significant periodic variations. The downstream amplitudes are diminished by the increasing crossflow magnitude, but can persist for at least ten rows of holes. Results were obtained for streamwise hole spacings of 5, 10, and 15 hole diameters; transverse hole spacings of 4, 6, and 8 diameters; and channel heights of 1, 2, and 3 diameters. The number of transverse hole rows was fixed at ten for all configurations. The characteristics of the periodic variations are presented and discussed as a function of the geometric parameters, including the effect of hole pattern.


Author(s):  
L. W. Florschuetz ◽  
C. R. Truman ◽  
D. E. Metzger

Two-dimensional arrays of circular jets of air impinging on a heat transfer surface parallel to the jet orifice plate are considered. The air, after inpingement, is constrained to exit in a single direction along the channel formed by the surface and the jet plate. The downstream jets are subjected to a crossflow originating from the upstream jets. Experimental and theoretical results obtained for streamwise distributions of jet and crossflow velocities are presented and compared. Measured Nusselt numbers resolved to one streamwise hole spacing are correlated with individual spanwise row jet Reynolds numbers and crossflow-to-jet velocity ratios. Correlations are presented for both inline and staggered hole patterns including effects of geometric parameters: streamwise hole spacing, spanwise hole spacing, and channel height, normalized by hole diameter. The physical mechanisms influencing heat transfer coefficients as a function of flow distribution and geometric parameters are also discussed.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Andallib Tariq ◽  
Anjana N. Prajapati

Abstract Matrix or latticework cooling has become a new area of research due to its advantage of providing a structural rigidity to the fragile structures like gas turbine blades, electronic components or circuitries, and compact heat exchangers. In this article, the heat transfer characteristics in matrix cooling channels with different rib angles have been studied using liquid crystal thermography. A total of three matrix models with rib angles 35 deg, 45 deg, and 55 deg having a common subchannel aspect ratio 0.8 have been studied. The results are evaluated in terms of local and average augmentation Nusselt numbers for different regions of the matrix. The augmentation Nusselt number has been found to increase in each region as the angle increases from 35 deg to 45 deg and the same has been found to decrease slightly upon the further increase in angle from 45 deg to 55 deg. The highest percentage increase in augmentation Nusselt number up to 50% has been observed in entry region, whereas the same remained nearly 26–30% in middle and exit regions in streamwise directions, i.e., the effect of the matrix rib angle is more prominent in the entry region. The higher resistance offered by the greater number of ribs for angle 55 deg is believed to be responsible for the decrease in augmentation Nusselt number for Re ≤ 9000.


1981 ◽  
Vol 103 (2) ◽  
pp. 337-342 ◽  
Author(s):  
L. W. Florschuetz ◽  
C. R. Truman ◽  
D. E. Metzger

Two-dimensional arrays of circular jets of air impinging on a heat transfer surface parallel to the jet orifice plate are considered. The air, after impingement, is constrained to exit in a single direction along the channel formed by the surface and the jet plate. The downstream jets are subjected to a crossflow originating from the upstream jets. Experimental and theoretical results obtained for streamwise distributions of jet and crossflow velocities are presented and compared. Measured Nusselt numbers resolved to one streamwise hole spacing are correlated with individual spanwise row jet Reynolds numbers and crossflow-to-jet velocity ratios. Correlations are presented for both inline and staggered hole patterns including effects of geometric parameters: streamwise hole spacing, spanwise hole spacing, and channel height, normalized by hole diameter. The physical mechanisms influencing heat transfer coefficients as a function of flow distribution and geometric parameters are also discussed.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Sangamesh C. Godi ◽  
Arvind Pattamatta ◽  
C. Balaji

Abstract In this work, fluid flow and heat transfer characteristics of three-dimensional (3D) wall jets exiting from a circular and square opening are presented based on experimental investigations. Two hydraulic diameters, namely, 2.5 and 7.5 mm and a Reynolds number range of 5000–20,000 have been considered. Mean velocity and turbulence intensity distribution in the walljet are quantified using a hot wire anemometry. Measurements are done both along the streamwise and spanwise directions. Transient infrared thermography is used for mapping the temperatures over the surface, and the heat transfer coefficients are estimated using a semi-infinite approximation methodology. Results show that, for circular jets, the effect of the jet diameter on the local and the spanwise-averaged Nusselt number is most pronounced near the jet exit. Further, it is also observed that circular jets have an edge over square jets. A correlation with a high correlation coefficient of 0.95 has been developed for spanwise average Nusselt number as a function of the Reynolds number and the dimensionless streamwise distance.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhanwei Liu ◽  
Xinyu Li ◽  
Tenglong Cong ◽  
Rui Zhang ◽  
Lingyun Zheng ◽  
...  

The prediction of flow and heat transfer characteristics of liquid sodium with CFD technology is of significant importance for the design and safety analysis of sodium-cooled fast reactor. The accuracies and uncertainties of the CFD models should be evaluated to improve the confidence of the numerical results. In this work, the uncertainties from the turbulent model, boundary conditions, and physical properties for the flow and heat transfer of liquid sodium were evaluated against the experimental data. The results of uncertainty quantization show that the maximum uncertainties of the Nusselt number and friction coefficient occurred in the transition zone from the inlet to the fully developed region in the circular tube, while they occurred near the reattachment point in the backward-facing step. Furthermore, in backward-facing step flow, the maximum uncertainty of temperature migrated from the heating wall to the geometric center of the channel, while the maximum uncertainty of velocity occurred near the vortex zone. The results of sensitivity analysis illustrate that the Nusselt number was negatively correlated with the thermal conductivity and turbulent Prandtl number, while the friction coefficient was positively correlated with the density and Von Karman constant. This work can be a reference to evaluate the accuracy of the standard k-ε model in predicting the flow and heat transfer characteristics of liquid sodium.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4327
Author(s):  
Min-Seob Shin ◽  
Santhosh Senguttuvan ◽  
Sung-Min Kim

The present study experimentally and numerically investigates the effect of channel height on the flow and heat transfer characteristics of a channel impingement cooling configuration for various jet Reynolds numbers in the range of 2000–8600. A single array consisting of eleven jets with 0.8 mm diameter injects water into the channel with 2 mm width at four different channel heights (3, 4, 5, and 6 mm). The average heat transfer coefficients at the target surface are measured by maintaining a temperature difference between the jet exit and the target surface in the range of 15–17 °C for each channel height. The experimental results show the average heat transfer coefficient at the target surface increases with the jet Reynolds number and decreases with the channel height. An average Nusselt number correlation is developed based on 85 experimentally measured data points with a mean absolute error of less than 4.31%. The numerical simulation accurately predicts the overall heat transfer rate within 10% error. The numerical results are analyzed to investigate the flow structure and its effect on the local heat transfer characteristics. The present study advances the primary understanding of the flow and heat transfer characteristics of the channel impingement cooling configuration with liquid jets.


2011 ◽  
Vol 71-78 ◽  
pp. 1187-1190
Author(s):  
Yan Lai Zhang ◽  
Zhong Hao Rao ◽  
Shuang Feng Wang ◽  
Hong Zhang ◽  
Li Jun Li ◽  
...  

This experiment is performed to investigate heat transfer characteristics with the PCM microcapsule slurry in a solid phase state at a horizontal rectangular enclosure heating from below and cooling from top. Some important parameters are taken into account such as the mass concentration of the PCM, the temperature difference between heating plate and cooling plate, Nusselt number Nu, Rayleigh number Ra and the aspect ratio (width/height) of the horizontal rectangular enclosure. Experiment is done under the thermal steady condition in the PCM microcapsule slurry. Heat transfer coefficient is measured under various temperature differences in PCM mass concentrations of 10% and 20%. And relationship with Nusselt number Nu and Rayleigh number Ra is summarized to various heights H or the aspect ratio (width/height) Ar of enclosure.


2007 ◽  
Vol 11 (4) ◽  
pp. 171-178
Author(s):  
Khalid Alammar

Using the standard k-e turbulence model, an incompressible, axisymmetric turbulent flow with a sudden expansion was simulated. Effect of Prandtl number on heat transfer characteristics downstream of the expansion was investigated. The simulation revealed circulation downstream of the expansion. A secondary circulation (corner eddy) was also predicted. Reattachment was predicted at approximately 10 step heights. Corresponding to Prandtl number of 7.0, a peak Nusselt number 13 times the fully-developed value was predicted. The ratio of peak to fully-developed Nusselt number was shown to decrease with decreasing Prandtl number. Location of maximum Nusselt number was insensitive to Prandtl number.


Sign in / Sign up

Export Citation Format

Share Document