The Wear of High Molecular Weight Polyethylene—Part I: The Wear of Isotropic Polyethylene Against Dry Stainless Steel in Unidirectional Motion

1978 ◽  
Vol 100 (2) ◽  
pp. 208-218 ◽  
Author(s):  
J. R. Atkinson ◽  
K. J. Brown ◽  
D. Dowson

The wear of surgical grade ultra-high molecular weight polyethylene against stainless steel has been studied for unidirectional motion. After a short wearing-in period, two distinct steady-state regions appear on the wear graphs. In the first section adhesion is the predominant wear mechanism and a transfer film of polymer builds up on the steel counterface. After a certain sliding distance, determined by the load, the adhesive mechanism is augmented by fatigue wear and the wear rate increases sharply and remains constant at the new value.

2017 ◽  
Vol 31 (11) ◽  
pp. 1483-1496
Author(s):  
Ziyang Wang ◽  
Yunhai Ma ◽  
Li Guo ◽  
Jin Tong

Ultra-high-molecular-weight polyethylene (UHMWPE) reinforced with carbon fibre (CF) and filled with polyphenyl ester (POB) and nanosized copper (Cu) fillers was prepared by compression moulding. The tribological behaviours and the synergism of the incorporation of fibre and particulates were studied. The proportions of the reinforcement material ranged from 5 wt% to 25 wt%, the filler material of POB varied from 5 wt% to 25 wt% and the nanosized filler was from 4 wt% to 12 wt%. In the sample with CF only, the lowest wear rate was observed for the UHMWPE + 15% CF composite. The particulate filler further reduced the composite wear rate, and the lowest wear rate was found for the hybrid with CF, POB and nanosize Cu particles, that is, for the UHMWPE + 15% CF + 15% POB + 12% Cu composite. The particulate filler was added, and the coefficient of friction slightly increased. The transfer film formed on the metal counterface was studied using optical microscopy, and the topography of the transfer film was investigated using atomic force microscopy. Results showed that the transfer films were thin, compact and uniform on the metal counterfaces of the UHMWPE + 15% CF + 15% POB + 12% Cu composite. Worn surface morphologies of composites were studied using scanning electron microscopy. Results showed that the worn surface of the UHMWPE + 15% CF + 15% POB + 12% Cu composite was smoother and had better wear resistance than that of other composites.


2009 ◽  
Vol 423 ◽  
pp. 125-130 ◽  
Author(s):  
Alvaro Mestra ◽  
Gemma Fargas ◽  
Marc Anglada ◽  
Antonio Mateo

Duplex stainless steels contain similar amounts of austenite  and ferrite α. This two-phase microstructure leads to an excellent combination of mechanical properties and corrosion resistance. However, there are few works dealing with the wear behaviour of these steels. This paper aims to determine the sliding wear mechanisms of a duplex stainless steel type 2205. In order to do it, three different sliding velocities (0.2, 0.7 and 1.2 m/s) and six sliding distances (500, 1000, 2000, 3000, 4000 and 5000 m) were selected. The results show that wear rate depends on both sliding velocity and sliding distance. The wear mechanisms detected were plowing, microcracking and microcutting (typical mechanisms of fatigue wear). These mechanisms evolve according to sliding velocity and sliding distance, highlighting a transition zone in which wear rate is reduced.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaocui Xin ◽  
Yunxia Wang ◽  
Zhaojie Meng ◽  
Hao Liu ◽  
Yunfeng Yan ◽  
...  

Purpose This paper aims to focus on studying the addition of nano-tungsten disulfide (WS2) on fretting wear performance of ultra-high-molecular-weight-polyethylene (UHMWPE). Design/methodology/approach In this study, the effect of WS2 content on fretting wear performance of UHMWPE was investigated. The fretting wear performance of the UHMWPE and WS2/UHMWPE nanocomposites were evaluated on oscillating reciprocating friction and wear tester. The data of the friction coefficient and the specific wear rate were obtained. The worn surfaces of composites were observed. The transfer film and its component were analyzed. Findings With the addition of 0.5% WS2, the friction coefficient and specific wear rate increased. With the content increased to 1% and 1.5%, the friction coefficient and specific wear rate decreased. The lowest friction coefficient and specific wear rate were obtained with the addition of 1.5% nano-WS2. Continuingly increasing content, the friction coefficient and wear rate increased but lower than that of pure UHMWPE. Research limitations/implications The research indicated the fretting wear performance related to the content of nano-WS2 with the incorporation of WS2 into UHMWPE. Practical implications The result may help to choose the appropriate content. Originality/value The main originality of the research is to reveal the fretting behavior of UHMWPE and WS2/UHMWPE nanocomposites. It makes us realize the nano-WS2 had an effect on the fretting wear performance of UHMWPE. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0151/


Author(s):  
Xincong Zhou ◽  
Alison L Galvin ◽  
Zhongmin Jin ◽  
Xinping Yan ◽  
J Fisher

The aims of this study were to investigate how the dimples on a metallic counterface affect the wear rate of ultra-high molecular weight polyethylene (UHMWPE) in a multi-directional reciprocating pin-on-plate machine. The plates were high nitrogen stainless steel, representing the femoral head material. The pins used in this study were of ultra-high molecular weight polyethylene GUR 1120, which represents the material used in an acetabular cup. Three different cases were investigated: a smooth surface without dimples as a reference case, a surface with medium dimples with an average valley of 2.3 µm and a surface with large dimples with an average valley of 5.9 µm. It was found that all the dimples investigated did not improve the lubrication, but instead increased the surface roughness; consequently, the wear of UHWMPE was slightly increased.


2011 ◽  
Vol 4 (7) ◽  
pp. 1033-1045 ◽  
Author(s):  
Sara A. Atwood ◽  
Douglas W. Van Citters ◽  
Eli W. Patten ◽  
Jevan Furmanski ◽  
Michael D. Ries ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document