Transient Dynamics of a Tilting Pad Gas Bearing System

1967 ◽  
Vol 89 (4) ◽  
pp. 499-507 ◽  
Author(s):  
V. Castelli ◽  
J. T. McCabe

A method for obtaining the performance characteristics of a rotor-tilting pad gas lubricated journal bearing system by solving the appropriate dynamics equations together with the time-transient Reynolds’ equation is outlined. Results for a 4 degree of freedom and an 18 degree of freedom system are given. Comparison with steady-state and experimental results are also discussed.

1961 ◽  
Vol 83 (2) ◽  
pp. 195-200 ◽  
Author(s):  
S. Cooper

The object of the paper is to indicate the value of theoretical investigations of hydrodynamic finite bearings under steady-state conditions. Methods of solution of Reynolds equation by both desk and digital computing, and methods of stabilizing the processes of solution, are described. The nondimensional data available from the solutions are stated. The outcome of an attempted solution of the energy equation is discussed. A comparison between some theoretical and experimental results is shown. Experimental methods employed and some difficulties encountered are discussed. Some theoretical results are given to indicate the effects of the inclusion of slip velocity, stabilizing slots, and a simple case of whirl.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Suresh Verma ◽  
Vijay Kumar ◽  
K. D. Gupta

A comparative study on the performance characteristics of the flexible multirecess hydrostatic journal bearing system with constant flow valve and capillary restrictors has been presented considering the effect of micropolar parameters. The modified Reynolds equation for the flow of micropolar lubricant through the bearing has been solved using finite element method, and the resulting elastic deformation in the bearing shell has been determined iteratively. The results indicate that the micropolar parameters of the lubricant affect the performance of the flexible multirecess hydrostatic journal bearing system quite significantly.


1970 ◽  
Vol 37 (4) ◽  
pp. 945-953 ◽  
Author(s):  
F. C. Hsing ◽  
H. S. Cheng

This paper presents a numerical scheme capable of yielding accurate pressure profile for the transient and steady hydrodynamic gas film generated by high-speed relative motion of two nonparallel surfaces. The numerical difficulties associated with high compressibility numbers for the gas film Reynolds equation were overcome by employing a set of systematically generated irregular grid spacings based on a coordinate transformation. By coupling the fluid-film solution with the equations of motion of a tilting pad, the dynamics of the mass film interaction were treated. Results are presented for both steady-state and dynamical solutions. Static solutions for a 120-deg partial-arc gas bearing have been used for comparison.


Author(s):  
Niranjan Singh ◽  
RK Awasthi

This paper concerns with theoretical investigation to predict the influence of cylindrical textures on the static and dynamic performance characteristics of hydrodynamic journal bearing system and the performance is compared with smooth surface bearing. The Reynolds equation governing the fluid–film between the journal and the bearing surface is solved numerically with the assistance of finite element method and the performance characteristics are evaluated as a function of eccentricity ratio, dimple depth and its location. In this study, four journal bearing configurations viz: smooth (non-textured), full-textured, partially textured-I, and partially textured-II are considered for the evaluation of theoretical results. The simulated results indicate that the influence of surface textures is more significant when the textures were created in upstream zone of 126°–286° and dimple aspect ratio nearly 1.0.


Author(s):  
Niranjan Singh ◽  
RK Awasthi

In the present work, theoretical investigation has been performed to predict the influence of spherical textures on the performance characteristics of two-lobe journal bearing system. The flow of lubricant in the clearance space between the bearing and the journal is governed by the Reynolds equation assuming the flow is Newtonian and isoviscous. The Reynolds equation is solved using a finite element method and the static performance parameters of circular/two-lobe smooth/textured journal bearing system have been computed with variation in eccentricity ratio, dimple depth and its location. The numerically simulated results reveal that the partial surface texturing can provide better performance when the textures are created in the pressure build-up region of 126°–286° and the dimple aspect ratio is nearly 1.0.


1968 ◽  
Vol 90 (1) ◽  
pp. 243-253 ◽  
Author(s):  
F. K. Orcutt ◽  
C. W. Ng

Calculated data on steady-state and dynamic properties of the plain cylindrical floating-ring bearing with pressurized lubricant supply are given. The data are for a bearing with L/D of 1, and values of the ratio of inner to outer film clearances of 0.7 and 1.3. One value of dimensionless supply pressure parameter is covered. Experimental results are presented which verify the calculated results and which supplement them, particularly with respect to stability characteristics of the bearing.


Sign in / Sign up

Export Citation Format

Share Document