Symmetric Deformations of Viscoelastic-Plastic Cylinders

1966 ◽  
Vol 33 (2) ◽  
pp. 327-334 ◽  
Author(s):  
M. J. Crochet

This paper, in the main, contains a general solution for a viscoelastic-plastic hollow circular cylinder under internal pressure and in the state of plane strain. The medium is assumed to be isotropic and homogeneous, and the constitutive equations used are a special case of those given in [1]. Solutions for both loading and unloading from a viscoelastic-plastic state are considered, and numerical results are obtained for the specific case of an incompressible cylinder under a step pressure. Also discussed briefly is the torsion of a viscoelastic-plastic cylinder, the solution of which is again illustrated by a numerical example.

1977 ◽  
Vol 44 (4) ◽  
pp. 766-768
Author(s):  
N. Inoue ◽  
H. Nakagawa ◽  
T. Nakayama ◽  
M. Shimono ◽  
T. Tanaka

A new method for obtaining statically admissible states of stress in plane strain in the mathematical theory of plasticity is presented. After deriving a general solution, the proposed procedure is exemplified by a known solution of a thick circular cylinder subjected to internal pressure. The method is applied to a thick circular cylinder subjected to internal pressure and shear, and a lower-bound solution is given.


2003 ◽  
Vol 125 (2) ◽  
pp. 169-177 ◽  
Author(s):  
M. M. Yovanovich

General solution for thermal spreading and system resistances of a circular source on a finite circular cylinder with uniform side and end cooling is presented. The solution is applicable for a general axisymmetric heat flux distribution which reduces to three important distributions including isoflux and equivalent isothermal flux distributions. The dimensionless system resistance depends on four dimensionless system parameters. It is shown that several special cases presented by many researchers arise directly from the general solution. Tabulated values and correlation equations are presented for several cases where the system resistance depends on one system parameter only. When the cylinder sides are adiabatic, the system resistance is equal to the one-dimensional resistance plus the spreading resistance. When the cylinder is very long and side cooling is small, the general relationship reduces to the case of an extended surface (pin fin) with end cooling and spreading resistance at the base. The special case of an equivalent isothermal circular source on a very thin infinite circular disk is presented.


2003 ◽  
Vol 125 (3) ◽  
pp. 267-273 ◽  
Author(s):  
W. Zhao ◽  
R. Seshadri ◽  
R. N. Dubey

A technique for elastic-plastic analysis of a thick-walled elastic-plastic cylinder under internal pressure is proposed. It involves two parametric functions and piecewise linearization of the stress-strain curve. A deformation type of relationship is combined with Hooke’s law in such a way that stress-strain law has the same form in all linear segments, but each segment involves different material parameters. Elastic values are used to describe elastic part of deformation during loading and also during unloading. The technique involves the use of deformed geometry to satisfy the boundary and other relevant conditions. The value of strain energy required for deformation is found to depend on whether initial or final geometry is used to satisfy the boundary conditions. In the case of low work-hardening solid, the difference is significant and cannot be ignored. As well, it is shown that the new formulation is appropriate for elastic-plastic fracture calculations.


A general theory of work-hardening incompressible plastic materials is developed as a special case of Truesdell’s theory of hypo-elasticity. Equations are given in general coordinates for a single loading followed by one unloading, and attention is directed to materials for which the stress-logarithmic strain curve for unloading in simple extension is linear. Using a particular case of the corresponding constitutive equations for loading, which is a generalization of that suggested by Prager, applications are made to a number of specific problems.


1949 ◽  
Vol 2 (4) ◽  
pp. 469
Author(s):  
W Freiberger ◽  
RCT Smith

In this paper we discuss the flexure of an incomplete tore in the plane of its circular centre-line. We reduce the problem to the determination of two harmonic functions, subject to boundary conditions on the surface of the tore which involve the first two derivatives of the functions. We point out the relation of this solution to the general solution of three-dimensional elasticity problems. The special case of a narrow rectangular cross-section is solved exactly in Appendix II.


2012 ◽  
Vol 217-219 ◽  
pp. 1421-1424 ◽  
Author(s):  
Bao Sheng Zhao ◽  
Di Wu

A refined theory of axisymmetric cylinder in one-dimensional (1D) hexagonal quasicrystals (QCs) is analyzed. Based on elastic theory with 1D hexagonal QCs, the refined theory of axisymmetric cylinder is derived by using general solution of 1D hexagonal QCs and Lur’e method without ad hoc assumptions. At first, expressions were obtained for all the phonon and phason displacements and stress components in term of the three functions with single independent variable. Based on the boundary conditions, the refined equation for the cylinder is derived directly. And the approximate equation is accurate up to the second-order terms with respect to radius of circular cylinder.


2016 ◽  
Vol 797 ◽  
pp. 322-344 ◽  
Author(s):  
Yuriy A. Semenov ◽  
Guo Xiong Wu

A general similarity solution for water-entry problems of a wedge with its inner angle fixed and its sides in expansion is obtained with flow detachment, in which the speed of expansion is a free parameter. The known solutions for a wedge of a fixed length at the initial stage of water entry without flow detachment and at the final stage corresponding to Helmholtz flow are obtained as two special cases, at some finite and zero expansion speeds, respectively. An expanding horizontal plate impacting a flat free surface is considered as the special case of the general solution for a wedge inner angle equal to ${\rm\pi}$. An initial impulse solution for a plate of a fixed length is obtained as the special case of the present formulation. The general solution is obtained in the form of integral equations using the integral hodograph method. The results are presented in terms of free-surface shapes, streamlines and pressure distributions.


1990 ◽  
Vol 57 (1) ◽  
pp. 203-208 ◽  
Author(s):  
J. M. Snyder ◽  
J. F. Wilson

Orthotropic, polymeric tubes subjected to internal pressure may undergo large deformations while maintaining linear moment-curvature behavior. Such tubes are modeled herein as inertialess, elastic cantilever beams (the elastica) with a payload mass at the tip and with internal pressure as the eccentric tip follower loading that drives the configurations through large deformations. From the nonlinear equations of motion, dynamic beam trajectories are calculated over a range of system parameters for the special case of a point mass at the tip and a terminated ramp pressure loading. The dynamic responses, which are unique because the loading history and the range of motion are fully defined, are presented in nondimensional form and are compared to static responses presented in a companion study. These results are applicable to the dynamic design of high flexure, tube-type, robotic manipulator arms.


1965 ◽  
Vol 61 (1) ◽  
pp. 133-155 ◽  
Author(s):  
G. R. Morris

The most general differential equation to which the dynamical description of the title applies iswhere dots denote differentiation with respect to t. The essential problem for this equation is to determine the behaviour of solutions as t → ∞. When we attack this problem, the most obvious question is whether, under reasonable conditions on p(t), every solution is bounded as t → ∞ this question is open except when g(x) is linear. In the special case when p(t) is periodic, (1·1) may have periodic solutions; it is clear that any such solution is bounded, and it is worth mentioning that finding periodic solutions is the easiest way of finding particular bounded ones. So long as the bounded-ness problem is unsolved, there is a special interest in finding a large class of particular bounded solutions: if we know such a class then, although we cannot say whether the general solution is bounded or not, we can make the imprecise comment that either the general solution is in fact bounded or the structure of the whole set of solutions is quite complicated.


Sign in / Sign up

Export Citation Format

Share Document