The Effect of Mass Transfer on Free Convection

1960 ◽  
Vol 82 (3) ◽  
pp. 260-263 ◽  
Author(s):  
R. Eichhorn

Consideration is given to the constant property laminar boundary layer equations with free convection and mass transfer. It is shown that similar solutions are possible for blowing rate distributions varying as the distance from the leading edge raised to the power (n − 1)/4 where n is the exponent in a power law surface temperature distribution. Solutions to the equations in the form of skin friction and heat-transfer parameters, and velocity and temperature profiles are presented for the constant wall temperature case for a fluid with Pr = 0.73. The cases considered range from strong suction to strong blowing. Mass transfer has a pronounced effect on the heat transfer but only a slight effect on the skin friction. In light of the solutions presented, these effects are shown to be physically rational.

1961 ◽  
Vol 12 (2) ◽  
pp. 165-188 ◽  
Author(s):  
D. G. Hurley

SummaryPrevious theoretical work on mass transfer cooling is reviewed and it is shown that this may be complemented by similar solutions that occur when the velocity outside a two-dimensional boundary layer varies as some power of the distance from the front stagnation point. The case of stagnation point flow with constant wall temperature is investigated in some detail, under the assumption that the temperature differences are everywhere small compared with the absolute temperature. Calculations on an analogue computer, supplemented by an investigation of the asymptotic behaviour, are used to determine the boundary layer development and heat transfer rates when the coolant is hydrogen, helium, steam or carbon dioxide. It is found that, on a mass flow basis, hydrogen reduces the heat transfer rate most and that steam is the next most effective of the substances investigated.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
N. Ahmed

An exact solution to the problem of MHD transient free convection and mass transfer flow of a viscous, incompressible, and electrically conducting fluid past a suddenly started infinite vertical plate taking into account the thermal diffusion as well as the thermal radiation is presented. Assuming the medium to be nonscattered and the fluid to be nongray, emitting–absorbing, and optically thin radiation limit properties, the equations governing the flow and heat and mass transfer are solved by Laplace transform technique. The expressions for the velocity field, the concentration field, the skin friction at the plate in the direction of the flow, and the coefficient of heat transfer and mass transfer from the plate to the fluid have been obtained, and their numerical values for different values of the physical parameters involved in the problem have been demonstrated in graphs and tables, and these are physically interpreted. It is found that the thermal radiation retards the fluid flow whereas the Soret effect accelerates the flow. The viscous drag on the plate is increased under the Soret and magnetic field effects whereas the thermal radiation reduces the skin friction. Further, the rate of heat transfer at the plate increases under thermal radiation effect. Also, in the presence of radiation, the Soret effect results in a steady increase in the mass flux from the fluid to the plate.


1977 ◽  
Vol 30 (3) ◽  
pp. 335 ◽  
Author(s):  
RL Verma ◽  
Punyatma Singh

The free convection flow along a semi-infinite horizontal plate oscillating in its own plane is analysed The basic flow is purely buoyancy induced, while the oscillations in the plate cause a time-dependent boundary layer flow and heat transfer. The boundary layer equations are linearized and the first two approximations are considered. Two separate solutions valid for high and low frequency ranges are obtained by a series expansion in terms of frequency parameters. The skin friction and the rate of heat transfer are studied for both frequency ranges. For very high frequencies, the oscillatory flow pattern is of a 'shear-wave' type, unaffected by the mean flow. It is found that the phase of the skin friction at the plate lags that of the plate oscillations by in and the rate of heat transfer has a phase lag of 1/2n.


1966 ◽  
Vol 88 (4) ◽  
pp. 343-349 ◽  
Author(s):  
W. J. Rivers ◽  
P. W. McFadden

Free-convection heat transfer from a solid surface to liquid Helium II in the presence of a film of either liquid Helium I or helium gas is analyzed mathematically. The analysis includes two heater shapes, a vertical flat plate and a horizontal circular cylinder, each with an isothermal surface. The integral forms of the boundary-layer equations are used to describe the heat transfer and fluid flow processes that occur within the film. The velocity and temperature profiles within the film are approximated by fourth degree polynomials whose coefficients were evaluated by applying a system of boundary conditions which were derived in the usual fashion but are based on assumed discontinuities in both the velocity and temperature profiles at the film-Helium II interface. Calculated results, which include the film thickness, the heat transfer coefficient, and the mass flow in the film, are presented and discussed.


1982 ◽  
Vol 104 (1) ◽  
pp. 132-138 ◽  
Author(s):  
M. Kumari ◽  
G. Nath

The combined effect of forced and free convection on the unsteady laminar incompressible boundary-layer flow with mass transfer at the stagnation point of a three-dimensional body with time dependent wall temperature has been studied. Both semisimilar and self-similar solutions have been obtained. The governing equations have been solved numerically using an implicit finite-difference scheme. The results indicate that the buoyancy force strongly affects the skin friction whereas its effect on the heat transfer is comparatively less. However, the heat transfer is significantly changed due to the wall temperature which varies with time, but the skin friction is little affected by it. The mass transfer and Prandtl number affect both the skin friction and heat transfer. The buoyancy force which assists the forced flow causes an overshoot in both the velocity components.


1978 ◽  
Vol 100 (3) ◽  
pp. 429-434 ◽  
Author(s):  
H. Imura ◽  
R. R. Gilpin ◽  
K. C. Cheng

The flow over a horizontal isothermally heated plate at Reynolds numbers below that at which hydrodynamic instabilities exist, is characterized by a region of laminar forced convection near the leading edge, followed by the onset of longitudinal vortices and their growth to a finite amplitude and finally a transition to a turbulent flow regime. Results are presented for the temperature profiles, the thermal boundary layer thickness, and the local Nusselt number. They are used to identify the various flow regimes. It was found that the transition from laminar forced convection to turbulent convection was characterized by the parameter Grx/Rex1.5 falling in the range 100 to 300. For values of this parameter greater than 300 the heat transfer rates were independent of Reynolds number and typical of those for turbulent free convection from a horizontal surface.


1984 ◽  
Vol 106 (2) ◽  
pp. 297-303 ◽  
Author(s):  
L. C. Chow ◽  
S. R. Husain ◽  
A. Campo

A numerical investigation was conducted to study the simultaneous effects of free convection and axial conduction on forced-convection heat transfer inside a vertical channel at low Peclet numbers. Insulated entry and exit lengths were provided in order to assess the effect of upstream and downstream energy penetration due to axial conduction. The fluid enters the channel with a parabolic velocity and uniform temperature profiles. A constant-property (except for the buoyancy term), steady-state case was assumed for the analysis. Results were categorized into two main groups, the first being the case where the channel walls were hotter than the entering fluid (heating), and the second being the reverse of the first (cooling). For each group, heat transfer between the fluid and the walls were given as functions of the Grashof, Peclet, and Reynolds numbers.


Author(s):  
K. Jung ◽  
D. K. Hennecke

The effect of leading edge film cooling on heat transfer was experimentally investigated using the naphthalene sublimation technique. The experiments were performed on a symmetrical model of the leading edge suction side region of a high pressure turbine blade with one row of film cooling holes on each side. Two different lateral inclinations of the injection holes were studied: 0° and 45°. In order to build a data base for the validation and improvement of numerical computations, highly resolved distributions of the heat/mass transfer coefficients were measured. Reynolds numbers (based on hole diameter) were varied from 4000 to 8000 and blowing rate from 0.0 to 1.5. For better interpretation, the results were compared with injection-flow visualizations. Increasing the blowing rate causes more interaction between the jets and the mainstream, which creates higher jet turbulence at the exit of the holes resulting in a higher relative heat transfer. This increase remains constant over quite a long distance dependent on the Reynolds number. Increasing the Reynolds number keeps the jets closer to the wall resulting in higher relative heat transfer. The highly resolved heat/mass transfer distribution shows the influence of the complex flow field in the near hole region on the heat transfer values along the surface.


Sign in / Sign up

Export Citation Format

Share Document