Low Frequency Vibration Isolation Through an Active-on-Active Approach: Coupling Effects

2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Qiao Sun ◽  
Robert A. Wolkow ◽  
Mark Salomons

The extreme sensitivity of a scanning probe microscope demands an exceptional noise cancellation device that could effectively cut off a wide range of vibration noise. Existing commercial devices, although excellent in canceling high frequency noise, commonly leave low frequency vibration unattenuated. We design an add-on active stage that can function together with a standalone existing active stage. The objective is to provide a higher level of noise cancellation by lowering the overall system cut-off frequency. This study is concerned with the theoretical aspects of the coupling characteristics involved in stacking independently designed stages together to form a two-stage isolator. Whether an add-on stage would pose a stability threat to the existing stage needs to be addressed. In addition, we explore the use of coupling effects to optimize the performance of the overall system.

Author(s):  
Yixin Su ◽  
Yanhui Ma ◽  
Yongpeng Gu ◽  
Suyuan Yu ◽  
Gexue Ren

In contrast with traditional mechanical bearing, Active magnetic bearing (AMB) has no friction and lubrication, and its dynamic performance can be adjusted by active control. To isolate low frequency vibration of the rotating machinery under 50Hz, a novel design of cascade PID controller (CPC) with two control loops for AMB is proposed. The main loop is a position loop and the secondary loop is a transmission force loop. According to the theoretical derivations in this study, the CPC controls both the rotor position and the transmission force. Even when the control parameters maintain constant, the dynamic characteristic parameters, equivalent stiffness and equivalent damping, vary with frequency continuously and smoothly. Therefore, they can be adjusted in a wide range to achieve isolation of low frequency vibration when using proper control parameters. A simulation example shows that the transmission force with a CPC is lower in the 8–50Hz when the rotor displacement is almost same as with a single stage PID controller (SSPC). Experimental verification was carried out in an experimental bench of AMB under unbalanced rotor condition. Results show that a CPC can reduce the vibration acceleration at 15–50Hz especially near the peaks. Simulation and experimental results well demonstrate the effectiveness and guaranteed stability of the CPC in the present study.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Ali Abolfathi ◽  
M. J. Brennan ◽  
T. P. Waters ◽  
B. Tang

Nonlinear isolators with high-static-low-dynamic-stiffness have received considerable attention in the recent literature due to their performance benefits compared to linear vibration isolators. A quasi-zero-stiffness (QZS) isolator is a particular case of this type of isolator, which has a zero dynamic stiffness at the static equilibrium position. These types of isolators can be used to achieve very low frequency vibration isolation, but a drawback is that they have purely hardening stiffness behavior. If something occurs to destroy the symmetry of the system, for example, by an additional static load being applied to the isolator during operation, or by the incorrect mass being suspended on the isolator, then the isolator behavior will change dramatically. The question is whether this will be detrimental to the performance of the isolator and this is addressed in this paper. The analysis in this paper shows that although the asymmetry will degrade the performance of the isolator compared to the perfectly tuned case, it will still perform better than the corresponding linear isolator provided that the amplitude of excitation is not too large.


2021 ◽  
Vol 88 (5) ◽  
Author(s):  
Mingkai Zhang ◽  
Jinkyu Yang ◽  
Rui Zhu

Abstract In this research, we aim to combine origami units with vibration-filtering metastructures. By employing the bistable origami structure as resonant unit cells, we propose metastructures with low-frequency vibration isolation ability. The geometrical nonlinearity of the origami building block is harnessed for the adjustable stiffness of the metastructure’s resonant unit. The quantitative relationship between the overall stiffness and geometric parameter of the origami unit is revealed through the potential energy analysis. Both static and dynamic experiments are conducted on the bistable origami cell and the constructed beam-like metastructure to verify the adjustable stiffness and the tunable vibration isolation zone, respectively. Finally, a two-dimensional (2D) plate-like metastructure is designed and numerically studied for the control of different vibration modes. The proposed origami-based metastructures can be potentially useful in various engineering applications where structures with vibration isolation abilities are appreciated.


2016 ◽  
Vol 2 (2) ◽  
pp. e1500778 ◽  
Author(s):  
Christopher B. Churchill ◽  
David W. Shahan ◽  
Sloan P. Smith ◽  
Andrew C. Keefe ◽  
Geoffrey P. McKnight

Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.


2009 ◽  
Vol 17 (3) ◽  
pp. 12-15
Author(s):  
David L. Platus

Researchers at Georgetown University's Department of Physiology and Biophysics use negative-stiffness vibration isolators to help measure micron-level patterns of neuronal activity in the mammalian neocortex. The research is shedding new light into brain sensory and motor processing functions relating to cardiac fibrillation and epilepsy.Isolating a laboratory's sensitive microscopy equipment against low-frequency vibration has become increasingly more vital to maintaining imaging quality and data integrity for neurobiology researches. Ever more frequently, laboratory researchers are discovering that conventional air tables and the more recent active (electronic) vibration isolation systems are not able to adequately cancel out the lower frequency perturbations derived from air conditioning systems, outside vehicular movements and ambulatory personnel. Such was the case with the Department of Physiology and Biophysics at Georgetown University Medical Center, where Professor Jian-Young Wu has been conducting research on waves of neuronal activity in the neocortex of the brain.


2008 ◽  
Vol 20 (02) ◽  
pp. 123-131
Author(s):  
Jiun-Hung Lin ◽  
Shih-Tsang Tang ◽  
Wei-Ru Han ◽  
Chih-Yuan Chuang ◽  
Ping-Ting Liu ◽  
...  

Many industrial workers must wear hearing protectors in order to avoid hearing loss. Conventional passive methods, such as earmuffs, are ineffective against low-frequency noise, and so the present study developed a headset equipped with a digital signal processing system that implements adaptive-feedback active noise cancellation (FbAANC) to reduce the low-frequency noise. The proposed FbAANC headset system reduced the noise level by 40–60 dB at frequencies down to 63 Hz. We also evaluated the effects of the FbAANC headset on speech intelligibility on a disyllabic Mandarin word discrimination test (WDT) platform. For an SNR below–10 dB, the mean WDT score was 13%–32% higher with the FbAANC headset than without the headset in 30 subjects with normal hearing thresholds. These results suggest that the FbAANC headset would be useful for hearing protection in workplaces with high levels of wideband industrial noise.


Sign in / Sign up

Export Citation Format

Share Document