Computational Study of the Effect of Governing Parameters on a Polymer Injection Molding Process for Single-Cavity and Multicavity Mold Systems

Author(s):  
M. Tutar ◽  
A. Karakus

In the present study a more complete numerical solution approach using parallel computing technology is provided for the three-dimensional modeling of mold insert polymer injection molding process by considering the effects of phase-change and compressibility for non-Newtonian fluid flow conditions. A volume of fluid (VOF) method coupled with a finite volume approach is used to simulate the mold-filling stage of the injection molding process. The variations in viscosity and density in the polymer melt flow are successfully resolved in the present VOF method to more accurately represent the rheological behavior of the polymer melt flow during the mold filling. A comprehensive high-resolution differencing scheme (compressive interface capturing scheme for arbitrary meshes or CICSAM) is successfully utilized to capture moving interfaces and the pressure-implicit with splitting operators pressure-velocity coupling algorithm is employed to enable a higher degree of approximate relation between corrections for pressure and velocity. The capabilities of the proposed numerical methodology in modeling real molding flow conditions are verified through quantitative and qualitative comparisons with other simulation programs and the data obtained from the experimental study conducted. The present numerical results are also compared with each other for a polypropylene female threaded adaptor pipe fitting model with a metallic insert for varying governing process conditions/parameters to assess the modeling constraints and enhancements of the present numerical procedure and the effects of these conditions to optimize the polymer melt flow for mold insert polymer injection molding process. The numerical results suggest that the present numerical solution approach can be used with a confidence for further studies of optimization of design of mold insert polymer injection molding processes.

2018 ◽  
Vol 145 ◽  
pp. 02006
Author(s):  
Margarita Natova ◽  
Ivan Ivanov ◽  
Sabina Cherneva ◽  
Maria Datcheva ◽  
Roumen Iankov

During conventional polymer injection molding, flow- and weld lines can arise at the molded parts caused by disturbed polymer melt flow when it crosses different parts of the equipment. Such processed plastic goods have discrete zones of inhomogeneities of very small dimensions. In order to stabilize the melt flow and to equalize dimensions of such defective products, an approach for pulse injection molding is applied during production of polymer packagings. Testing methods used for evaluation of macromechanical performance of processed polymer products are not readily applicable to estimate the changes in visual surface obtained during pulse injecting. To overcome this testing inconvenience the performance of processed packagings is evaluated by nanoindentation. Using this method, a quantitative assessment of the polymer properties is obtained from different parts of technological products.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1740 ◽  
Author(s):  
Ana Elduque ◽  
Daniel Elduque ◽  
Carmelo Pina ◽  
Isabel Clavería ◽  
Carlos Javierre

Polymer injection-molding is one of the most used manufacturing processes for the production of plastic products. Its electricity consumption highly influences its cost as well as its environmental impact. Reducing these factors is one of the challenges that material science and production engineering face today. However, there is currently a lack of data regarding electricity consumption values for injection-molding, which leads to significant errors due to the inherent high variability of injection-molding and its configurations. In this paper, an empirical model is proposed to better estimate the electricity consumption and the environmental impact of the injection-molding process. This empirical model was created after measuring the electricity consumption of a wide range of parts. It provides a method to estimate both electricity consumption and environmental impact, taking into account characteristics of both the molded parts and the molding machine. A case study of an induction cooktop housing is presented, showing adequate accuracy of the empirical model and the importance of proper machine selection to reduce cost, electricity consumption, and environmental impact.


2013 ◽  
Vol 562-565 ◽  
pp. 1380-1386
Author(s):  
Jian Zhuang ◽  
Da Ming Wu ◽  
Ya Jun Zhang ◽  
Lin Wang ◽  
Xiong Wei Wang ◽  
...  

The flow behaviors for polymer melt at the filling stage in micro injection molding are different from those in conventional injection molding due to the miniaturization of plastic parts. This paper focuses on the study of the effects of three main influencing factors, including the microscale viscosity and wall slip, on melt filling flow in microscale neglected those in conventional injection molding process. The theoretical models and the interrelation of these factors in microscale channels were constructed by means of the model correction method. Then, the micro melt flow behaviors were investigated with comparisons of the available experimental data. The results indicate that the dimensions affect the shear rates and viscous dissipation, which in turn affects the apparent viscosity. Finally, the conclusion is that the melt flow behaviors in microchannels are different from those in macrochannels owing to these significant influencing factors.


Author(s):  
Sridhar P. Ramamurthy ◽  
Lyle Steenson ◽  
Zhong Hu

Warpage is one of the most common defects of a plastic product in the polymer injection molding process. It is attributed to the differential shrinkage after the part is ejected from the die cavity due to the nonlinear material property of the polymer, improper design of the cooling system, geometry of the part and the related process parameters. In this paper, the warpage formation of a plastic part, Step Pad of polypropylene copolymer, in the cooling stage of the polymer injection molding process was simulated by finite element analysis (FEA). A three-dimensional FEA model, taking into account the nonlinear material (polypropylene copolymer) properties, with a thermal-structural sequential coupled approach of higher computing efficiency was developed. The effects of mold closed time and layout of cooling system on the dimension and shape of the part were investigated. Industrial experiments for the different mold closed times (25s, 30s, 35s, 40s, 45s, 50s, and 55s) were conducted. The simulation results were compared with the experimental results. The approach is effective in predicting warpage in the polymer injection molding processes.


AIChE Journal ◽  
1996 ◽  
Vol 42 (6) ◽  
pp. 1706-1714 ◽  
Author(s):  
S. C. Chen ◽  
N. T. Chen ◽  
K. S. Hsu ◽  
K. F. Hsu

2014 ◽  
Vol 611-612 ◽  
pp. 1724-1733
Author(s):  
David Garcia ◽  
Ronan Le Goff ◽  
Maxime Gasse ◽  
Alexandre Aussem

The subject discussed in this article concerns the determination of optimal sensor (pressure & temperature) configurations for polymer injection moulds. A sensor configuration is considered optimal when it is able to predict the product quality (dimension, warpage, etc.) with a good accuracy (from experimental data provided by these sensors). Initially, plastic engineers integrated sensors in moulds to acquire knowledge about their processes and to have better understanding of physical phenomenon. This article presents a numerical methodology to identify optimal combinations of sensors. The methodology is firstly based on polymer injection molding simulation to collect virtual sensor data. In a second step, virtual sensor data are analyzed by modern data-driven modeling techniques to identify optimal sensor configurations.


Sign in / Sign up

Export Citation Format

Share Document