Heat Transfer Characteristics of Baffled Channel Flow

2011 ◽  
Vol 133 (9) ◽  
Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang

Heat transfer characteristics of baffled channel flow, where thin baffles are mounted on both channel walls periodically in the direction of the main flow, have been numerically investigated in a laminar range. The main objectives of the present study are to find the physical reason responsible for the heat transfer enhancement in finned heat exchangers, and to identify the optimal configurations of the baffles to achieve the most efficient heat removal from the channel walls. Two key parameters are considered, namely ratio of baffle interval to channel height (RB) and Reynolds number (Re). We performed a parametric study and found that the large-scale vortices travelling along the channel walls between the neighboring baffles, which are generated by flow separation at the tips of the baffles and become unsteady due to a Hopf bifurcation from steady to a time-periodic flow, play the key role in the heat transfer enhancement by inducing strong vertical velocity fluctuation in the vicinity of the channel walls. We also propose a contour diagram (“map”) of averaged Nusselt number on the channel walls as a function of the two parameters. The results shed light on understanding and controlling heat transfer mechanism in a finned heat exchanger, being quite beneficial to its design.

Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang

Heat transfer characteristics of baffled channel flow, where thin baffles are mounted on both channel walls periodically in the direction of the main flow, have been numerically investigated in a laminar range. In baffled channel flow, heat transfer characteristics are significantly affected by large-scale vortices generated due to flow separation at the tips of the baffles. In this investigation, a parametric study has been carried out to identify the optimal configuration of the baffles to achieve the most efficient heat removal from the channel walls. Two key parameters are considered, namely baffle interval (L) and Reynolds number (Re). We elucidate the role of the primary instability, a Hopf bifurcation from steady to a time-periodic flow, in the convective heat transfer in baffled channel flow. We also propose a contour diagram (“map”) of averaged Nusselt number on the channel walls as a function of the two parameters. The results shed light on understanding and controlling heat transfer mechanism in a finned heat exchanger, being quite beneficial to its design.


Author(s):  
Huimin Tang ◽  
Huiying Wu

In this paper, the silicon-based corrugated microchannels used for the heat transfer enhancement were fabricated by MEMS technology for the first time. Both the flow and convective heat transfer characteristics of the deionized water through these corrugated microchannels were investigated experimentally, and comparisons were performed between corrugated microchannels and straight microchannels with the same cross-sectional aspect ratio (height-to-width ratio) and same hydraulic diameter. Experimental results showed that both the flow friction and Nusselt number in corrugated microchannels increased considerably compared with those in straight microchannels, and this increase became enlarged with the increase in the Reynolds number. With the same pumping power, using corrugated microchannels instead of straight microchannels caused the reduction in the total thermal resistance. The heat transfer enhancement mechanism of the corrugated microchannels was discussed. The results presented in this paper help to design the high efficiency integrated chip cooling system.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Lu Zheng ◽  
Yonghui Xie ◽  
Di Zhang ◽  
Haoning Shi

Passive flow control and heat transfer enhancement technique has become an attractive method for device internal cooling with low resistance penalty. In the present paper, the flow and heat transfer characteristics in the small scale rectangular channel with different groove–protrusions are investigated numerically. Furthermore, the combination effect with ribs is studied. The numerical results show that on the groove side, the flow separation mainly occurs at the leading edge, and the reattachment mainly occurs at the trailing edge in accordance with the local Nusselt number distribution. On the protrusion side, the separation mainly occurs at the protrusion back porch and enhances the heat transfer at the leading edge of the downstream adjacent groove. The rectangle case provides the highest dimensionless heat transfer enhancement coefficient Nu/Nu0, dimensionless resistance coefficient f/f0, and thermal performance (TP) with the highest sensitivity of Re. When ribs are employed, the separation bubble sizes prominently decrease, especially inside the second and third grooves. The Nu/Nu0 values significantly increase when ribs are arranged, and the one-row case provides the highest heat transfer enhancement by ribs. Besides, the two-row case provides the highest Nu/Nu0 value without ribs, and the three-row case shows the lowest Nu/Nu0 value whether ribs are arranged or not.


Author(s):  
Khalid N. Alammar ◽  
Lin-wen Hu

Numerical analysis is performed to examine axisymmetric laminar flow and heat transfer characteristics of colloidal dispersions of nanoparticles in water (nanofluids). Effect of volume fraction on flow and heat transfer characteristics is investigated. Four different materials, Alumina, Copper, Copper Oxide, and Graphite are considered. Heat transfer and property measurements were conducted previously for Alumina nanofluid. The measurements have shown that nanofluids can behave as homogeneous mixtures. It is found that oxide-based nanofluids offer the least heat transfer enhancement compared to elements-based nanofluids. When normalized by friction pressure drop, it is shown that graphite can have the highest effective heat transfer enhancement. For a given volume flow rate, all nanofluids exhibited linear increase in heat transfer enhancement with increasing colloids volume fraction, up to 0.05.


Author(s):  
Feng Zhang ◽  
Xinjun Wang ◽  
Jun Li ◽  
Daren Zheng ◽  
Junfei Zhou

The present work represents a numerical study on the flow and heat transfer characteristics in rectangular channels with protrusion-grooved turbulators. The Reynolds averaged Navier-Stokes equations, coupled with SST turbulence model, are adopted and solved. In this paper, six geometric protrusion shapes (circular, rectangular, triangular, trapezoidal, circular with leading round concave and circular with trailing round concave) are selected to perform the study. The flow structure, heat transfer enhancement, friction factor as well as thermal performance factor of the rectangular channel fitted with combined groove and different protrusions have been obtained at the Reynolds number ranging from 5000 to 20000. The results indicate that the protrusion shapes affect the velocity distribution near the groove surface. The case of circular protrusion with leading round concave provides the highest overall heat transfer enhancement, while it also causes the highest pressure loss penalty. The case of rectangular protrusion has the lowest overall heat transfer enhancement with high pressure loss penalty. The case of circular protrusion has similar overall heat transfer enhancement with cases of trapezoidal protrusion as well as circular protrusion with trailing round concave, but the pressure loss penalty of the case of circular protrusion is the lowest. In addition, the best overall thermal performance can be observed for circular protrusion-grooved channel.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
A. M. I. Mohamed ◽  
R. Hoettiba ◽  
A. M. Saif

Heat transfer enhancement using corrugated ribbed passages is one of the common enhancement techniques inside heat exchangers. The present study investigated numerically the effect of the corrugation rib angle of attack on the fluid flow and heat transfer characteristics inside the corrugated ribbed passage. The commercial computational fluid dynamics code PHOENICS 2006 was used to perform the numerical analysis by solving the Navier–Stokes and energy equations. The experimental part of this study was used only to validate the numerical model, and a good agreement between the experimental results and the model was obtained. The flow field characteristics and heat transfer enhancement were numerically investigated for different corrugated rib angles of attack as follows: 90 deg, 105 deg, 120 deg, 135 deg, and 150 deg. The corrugation rib angle of attack has a great effect on the reversed flow zone, the flow reattachments, and the enhancement of the heat transfer coefficient through the duct. The recommended rib angle of attack, which gives the optimum thermohydraulic performance, is found to be between 135 deg and 150 deg. The value of the maximum thermohydraulic performance is about 3.6 for the 150 deg rib angle of attack at a Reynolds number equal to 10,000.


Sign in / Sign up

Export Citation Format

Share Document