Measurements of the Static Friction Coefficient Between Tin Surfaces and Comparison to a Theoretical Model

2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Rebecca D. Ibrahim Dickey ◽  
Robert L. Jackson ◽  
George T. Flowers

A new experimental apparatus is used to measure the static friction between tin surfaces under various loads. After the data is collected it is then compared to an existing theoretical model. The experiment uses the classical physics technique of increasing the incline of a plane and block until the block slides. The angle at the initiation of sliding is used to find the static friction coefficient. The experiment utilizes an automated apparatus to minimize human error. The finite element based statistical rough surface contact model for static friction under full stick by Li, Etsion, and Talke (2010, “Contact Area and Static Friction of Rough Surfaces with High Plasticity Index,” ASME Journal of Tribology, 132(3), p. 031401) is used to make predictions of the friction coefficient using surface profile data from the experiment. Comparison of the computational and experimental methods shows similar qualitative trends, and even some quantitative agreement. After adjusting the results for the possible effect of the native tin oxide film, the theoretical and experimental results can be brought into reasonable qualitative and quantitative agreement.

2019 ◽  
Vol 10 (1) ◽  
pp. 253-273 ◽  
Author(s):  
Ilya Svetlizky ◽  
Elsa Bayart ◽  
Jay Fineberg

Contacting bodies subjected to sufficiently large applied shear will undergo frictional sliding. The onset of this motion is mediated by dynamically propagating fronts, akin to earthquakes, that rupture the discrete contacts that form the interface separating the bodies. Macroscopic motion commences only after these ruptures have traversed the entire interface. Comparison of measured rupture dynamics with the detailed predictions of fracture mechanics reveals that the propagation dynamics, dissipative properties, radiation, and arrest of these “laboratory earthquakes” are in excellent quantitative agreement with the predictions of the theory of brittle fracture. Thus, interface fracture replaces the idea of a characteristic static friction coefficient as a description of the onset of friction. This fracture-based description of friction additionally provides a fundamental description of earthquake dynamics and arrest.


2004 ◽  
Vol 126 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Lior Kogut ◽  
Izhak Etsion

A model that predicts the static friction for elastic-plastic contact of rough surfaces is presented. The model incorporates the results of accurate finite element analyses for the elastic-plastic contact, adhesion and sliding inception of a single asperity in a statistical representation of surface roughness. The model shows strong effect of the external force and nominal contact area on the static friction coefficient in contrast to the classical laws of friction. It also shows that the main dimensionless parameters affecting the static friction coefficient are the plasticity index and adhesion parameter. The effect of adhesion on the static friction is discussed and found to be negligible at plasticity index values larger than 2. It is shown that the classical laws of friction are a limiting case of the present more general solution and are adequate only for high plasticity index and negligible adhesion. Some potential limitations of the present model are also discussed pointing to possible improvements. A comparison of the present results with those obtained from an approximate CEB friction model shows substantial differences, with the latter severely underestimating the static friction coefficient.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 448
Author(s):  
Wojciech S. Gora ◽  
Jesper V. Carstensen ◽  
Krystian L. Wlodarczyk ◽  
Mads B. Laursen ◽  
Erica B. Hansen ◽  
...  

In recent years, there has been an increased uptake for surface functionalization through the means of laser surface processing. The constant evolution of low-cost, easily automatable, and highly repeatable nanosecond fibre lasers has significantly aided this. In this paper, we present a laser surface-texturing technique to manufacture a surface with a tailored high static friction coefficient for application within driveshafts of large marine engines. The requirement in this application is not only a high friction coefficient, but a friction coefficient kept within a narrow range. This is obtained by using nanosecond-pulsed fibre lasers to generate a hexagonal pattern of craters on the surface. To provide a suitable friction coefficient, after laser processing the surface was hardened using a chromium-based hardening process, so that the textured surface would embed into its counterpart when the normal force was applied in the engine application. Using the combination of the laser texturing and surface hardening, it is possible to tailor the surface properties to achieve a static friction coefficient of ≥0.7 with ~3–4% relative standard deviation. The laser-textured and hardened parts were installed in driveshafts for ship testing. After successfully performing in 1500 h of operation, it is planned to adopt the solution into production.


1994 ◽  
Vol 30 (10) ◽  
pp. 1188-1194 ◽  
Author(s):  
Youji YAMADA ◽  
Kenji SANDA ◽  
Kazuhide FUJITA ◽  
Nuio TSUCHIDA ◽  
Kouji IMAI

2011 ◽  
Vol 78 (5) ◽  
Author(s):  
Qiao Luo ◽  
Xiaobing Zhang

One of the key technologies of stacked projectile weapons is projectile positioning. However, the present projectile positioning structures have their respective advantages and shortcomings. A new structure based on the self-locking principle is put forward in this paper and verified as feasible by static analysis if the proper material and structural parameters are chosen. In order to check the strength and verify the feasibility of the structure under launch conditions, the multibody contact finite element model of the structure is established, coupled with dynamic load in the interior ballistic cycle. According to simulations and analysis, the projectile positioning structure is feasible and the strength of the projectile can meet the strength requirement for launch conditions. For different maximum static friction coefficients, simulations show that an increase in the maximum static friction coefficient between the contact surfaces of the positioning ring and barrel improves the positioning performance, but an increase in the maximum static friction coefficient between the contact surfaces of the positioning ring and projectile worsens. On the basis of great computation, it is found that an increase in the upper thickness and height of the positioning ring improves the positioning performance, but an increase in the lower thickness worsens the positioning performance. Further, a lower thickness affects the positioning performance more greatly. As a result, the positioning ring will be thin and light to improve the positioning performance. Compared with other positioning structures, the new structure has little influence on the ballistic performance and is a good application prospect.


Author(s):  
Anahita Emami ◽  
Seyedmeysam Khaleghian ◽  
Chuang Su ◽  
Saied Taheri

Good understanding of friction in tire-road interaction is of critical importance for vehicle dynamic control systems. Most of the friction models proposed to describe the friction coefficient between tire-treads and road surfaces have been developed based on empirical or semi-empirical relations that are not able to include many effective parameters involved in the tire-road interactions. Therefore, these models are just useful in limited conditions similar to the experiments, and do not accurately represent tire-road traction in numerical tire models. However, in last two decades, a few theoretical models have been developed to calculate the tire-road friction coefficient theoretically by considering both viscoelastic behavior of tire tread compounds and multi-scale interactions between tire treads and rough road surfaces. In this article, a novel physics-based model proposed by Persson has been investigated and used to develop computer algorithms for calculation of sliding friction coefficient between a tire tread compound and a rough substrate. The viscoelastic behavior of tread compound and the surface profile of rough counter surface are the inputs of this physics-based theoretical model. The numerical results of the model have been compared with the experimental results obtained from a dynamic friction tester designed and built in the Center for Tire Research (CenTire). Good agreement between numerical results of theoretical model and experimental results has been found at intermediate range of slip velocities considering the effect of adhesion and shearing in the real contact area in addition to hysteresis friction due to internal energy dissipation in the tire tread compound.


Sign in / Sign up

Export Citation Format

Share Document