fibre lasers
Recently Published Documents


TOTAL DOCUMENTS

440
(FIVE YEARS 38)

H-INDEX

35
(FIVE YEARS 3)

2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhiyue Zhou ◽  
Zefeng Wang ◽  
Wei Huang ◽  
Yulong Cui ◽  
Hao Li ◽  
...  

AbstractFibre lasers operating at the mid-IR have attracted enormous interest due to the plethora of applications in defence, security, medicine, and so on. However, no continuous-wave (CW) fibre lasers beyond 4 μm based on rare-earth-doped fibres have been demonstrated thus far. Here, we report efficient mid-IR laser emission from HBr-filled silica hollow-core fibres (HCFs) for the first time. By pumping with a self-developed thulium-doped fibre amplifier seeded by several diode lasers over the range of 1940–1983 nm, narrow linewidth mid-IR emission from 3810 to 4496 nm has been achieved with a maximum laser power of about 500 mW and a slope efficiency of approximately 18%. To the best of our knowledge, the wavelength of 4496 nm with strong absorption in silica-based fibres is the longest emission wavelength from a CW fibre laser, and the span of 686 nm is also the largest tuning range achieved to date for any CW fibre laser. By further reducing the HCF transmission loss, increasing the pump power, improving the coupling efficiency, and optimizing the fibre length together with the pressure, the laser efficiency and output power are expected to increase significantly. This work opens new opportunities for broadly tunable high-power mid-IR fibre lasers, especially beyond 4 μm.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 448
Author(s):  
Wojciech S. Gora ◽  
Jesper V. Carstensen ◽  
Krystian L. Wlodarczyk ◽  
Mads B. Laursen ◽  
Erica B. Hansen ◽  
...  

In recent years, there has been an increased uptake for surface functionalization through the means of laser surface processing. The constant evolution of low-cost, easily automatable, and highly repeatable nanosecond fibre lasers has significantly aided this. In this paper, we present a laser surface-texturing technique to manufacture a surface with a tailored high static friction coefficient for application within driveshafts of large marine engines. The requirement in this application is not only a high friction coefficient, but a friction coefficient kept within a narrow range. This is obtained by using nanosecond-pulsed fibre lasers to generate a hexagonal pattern of craters on the surface. To provide a suitable friction coefficient, after laser processing the surface was hardened using a chromium-based hardening process, so that the textured surface would embed into its counterpart when the normal force was applied in the engine application. Using the combination of the laser texturing and surface hardening, it is possible to tailor the surface properties to achieve a static friction coefficient of ≥0.7 with ~3–4% relative standard deviation. The laser-textured and hardened parts were installed in driveshafts for ship testing. After successfully performing in 1500 h of operation, it is planned to adopt the solution into production.


2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Enrique Castro-Camus ◽  
Martin Koch ◽  
Daniel M. Mittleman

AbstractWe discuss the progress in the field of THz imaging based on time-domain spectroscopy during the last 20 years emphasizing several highlights. These include 3D mapping of the water distribution of plants, THz reflection imaging of samples with arbitrary shape, burn wound imaging and the early diagnosis of diabetic foot disease. These applications greatly benefit from the introduction of fibre-coupled THz time-domain system operated by rugged and portable femtosecond fibre-lasers. THz imaging is a versatile measurement method that has a plethora of practical applications and great promise for the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergey A. Babin ◽  
Alexey G. Kuznetsov ◽  
Oleg S. Sidelnikov ◽  
Alexey A. Wolf ◽  
Ilya N. Nemov ◽  
...  

AbstractMultimode fibres provide a promising platform for boosting the capacity of fibre links and the output power of fibre lasers. The complex spatiotemporal dynamics of multimode beams may be controlled in spatial and temporal domains via the interplay of nonlinear, dispersive and dissipative effects. Raman nonlinearity induces beam cleanup in long graded-index fibres within a laser cavity, even for CW Stokes beams pumped by highly-multimode laser diodes (LDs). This leads to a breakthrough approach for wavelength-agile high-power lasers. However, current understanding of Raman beam cleanup is restricted to a small-signal gain regime, being not applicable to describing realistic laser operation. We solved this challenge by experimentally and theoretically studying pump-to-Stokes beam conversion in a graded-index fibre cavity. We show that random mode coupling, intracavity filtering and Kerr self-cleaning all play a decisive role for the spatio-spectral control of CW Stokes beams. Whereas the depleted LD pump radiation remains insensitive to them.


2021 ◽  
Vol 140 ◽  
pp. 107018
Author(s):  
Miguel López-Ripa ◽  
Benjamín Alonso ◽  
Sebastián Jarabo ◽  
Francisco J. Salgado-Remacha ◽  
Juan Carlos Aguado ◽  
...  

Author(s):  
Matthias Jager ◽  
Martin Lorenz ◽  
Robert Muller ◽  
Jens Kobelke ◽  
Katrin Wondraczek ◽  
...  
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3530
Author(s):  
Igor Kudelin ◽  
Srikanth Sugavanam ◽  
Maria Chernysheva

Gyroscopes merit an undeniable role in inertial navigation systems, geodesy and seismology. By employing the optical Sagnac effect, ring laser gyroscopes provide exceptionally accurate measurements of even ultraslow angular velocity with a resolution up to 10−11 rad/s. With the recent advancement of ultrafast fibre lasers and, particularly, enabling effective bidirectional generation, their applications have been expanded to the areas of dual-comb spectroscopy and gyroscopy. Exceptional compactness, maintenance-free operation and rather low cost make ultrafast fibre lasers attractive for sensing applications. Remarkably, laser gyroscope operation in the ultrashort pulse generation regime presents a promising approach for eliminating sensing limitations caused by the synchronisation of counter-propagating channels, the most critical of which is frequency lock-in. In this work, we overview the fundamentals of gyroscopic sensing and ultrafast fibre lasers to bridge the gap between tools development and their real-world applications. This article provides a historical outline, highlights the most recent advancements and discusses perspectives for the expanding field of ultrafast fibre laser gyroscopes. We acknowledge the bottlenecks and deficiencies of the presented ultrafast laser gyroscope concepts due to intrinsic physical effects or currently available measurement methodology. Finally, the current work outlines solutions for further ultrafast laser technology development to translate to future commercial gyroscopes.


2021 ◽  
Vol 11 (10) ◽  
pp. 4414
Author(s):  
Kaori Nagai ◽  
Kazuki Shimizu

Concrete cutting at construction sites causes problems such as noise, vibration, and dust. In particular, during the demolition and renovation work on buildings in urban areas, protection against noise, vibration, dust, etc., is needed. Concrete cutting using a CO2 laser was investigated 20 years ago. However, this method had never used because the equipment is difficult to carry. In this study, we used a portable fibre laser, which is convenient to carry. Two types of concretes with different strengths were prepared for the experiment. High-strength concrete has never been used in similar research before. High-strength concrete is just only used for skyscrapers because of its high quality and costs. Furthermore, it has already been used for skyscrapers in Japan. It is for this reason that we chose to use it in this study. Irradiation measurements were conducted under various conditions using laser powers of 6 and 9 kW. It was confirmed that the cutting effectiveness of CO2 and fibre lasers was approximately identical for concretes with a thickness of 200 mm. Furthermore, the cutting effectiveness for the two concretes with different densities was almost the same. However, the situation after cutting was different because the vitrification of the cutting and glass formation progressed in low-density concrete and an explosion phenomenon occurred in high-density concrete, simultaneously. This study suggests that laser concrete cutting can be used as a solution when noise and dust are major problems.


Sign in / Sign up

Export Citation Format

Share Document