A 3D Finite Element Study of Fatigue Life Dispersion in Rolling Line Contacts

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Nick Weinzapfel ◽  
Farshid Sadeghi ◽  
Vasilios Bakolas ◽  
Alexander Liebel

Rolling contact fatigue of rolling element bearings is a statistical phenomenon that is strongly affected by the heterogeneous nature of the material microstructure. Heterogeneity in the microstructure is accompanied by randomly distributed weak points in the material that lead to scatter in the fatigue lives of an otherwise identical lot of rolling element bearings. Many life models for rolling contact fatigue are empirical and rely upon correlation with fatigue test data to characterize the dispersion of fatigue lives. Recently developed computational models of rolling contact fatigue bypass this requirement by explicitly considering the microstructure as a source of the variability. This work utilizes a similar approach but extends the analysis into a 3D framework. The bearing steel microstructure is modeled as randomly generated Voronoi tessellations wherein each cell represents a material grain and the boundaries between them constitute the weak planes in the material. Fatigue cracks initiate on the weak planes where oscillating shear stresses are the strongest. Finite element analysis is performed to determine the magnitude of the critical shear stress range and the depth where it occurs. These quantities exhibit random variation due to the microstructure topology which in turn results in scatter in the predicted fatigue lives. The model is used to assess the influence of (1) topological randomness in the microstructure, (2) heterogeneity in the distribution of material properties, and (3) the presence of inherent material flaws on relative fatigue lives. Neither topological randomness nor heterogeneous material properties alone account for the dispersion seen in actual bearing fatigue tests. However, a combination of both or the consideration of material flaws brings the model’s predictions within empirically observed bounds. Examination of the critical shear stress ranges with respect to the grain boundaries where they occur reveals the orientation of weak planes most prone to failure in a three-dimensional sense that was not possible with previous models.

2019 ◽  
Vol 140 ◽  
pp. 105849 ◽  
Author(s):  
Mostafa El Laithy ◽  
Ling Wang ◽  
Terry J. Harvey ◽  
Bernd Vierneusel ◽  
Martin Correns ◽  
...  

1978 ◽  
Vol 100 (2) ◽  
pp. 156-165 ◽  
Author(s):  
T. E. Tallian ◽  
Y. P. Chiu ◽  
E. Van Amerongen

A refined mathematical model for the prediction of rolling contact fatigue is presented. It analyzes the effect of frictional traction in the contact surface, and of surface asperity slope, on the failure hazard functions applicable to surface and subsurface originated spalls. Major effects of traction on life arise from three sources: (a) increased surface distress micropitting; (b) increased microscopic shear stresses beneath surface furrows; (c) greatly increased macroscopic shear stresses in the zone relatively free from shear-stress which exists, in the absence of traction, between the asperity stress region and the Hertzian shear stress region. The major effect of steeper asperity slopes is to increase surface distress micropitting. A strong effect of traction on the angular orientation of the Hertz stress field is used to correlate experimentally observed changes in the Martin angle of orientation of deformation bands. The correlation permits calculation of the variation in the effective traction coefficient as a function of film thickness/roughness ratio. The traction coefficients obtained are then used as input to numerical life prediction. Satisfactory agreement is obtained between theory and experiment in predicting the life of seven groups of fatigue tested ball bearings with different surface roughness, run at different film thickness/roughness ratios.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Behrooz Jalalahmadi ◽  
Farshid Sadeghi

Microlevel material failure has been recognized as one of the main modes of failure for rolling contact fatigue (RCF) of bearing. Therefore, microlevel features of materials will be of significant importance to RCF investigation. At the microlevel, materials consist of randomly shaped and sized grains, which cannot be properly analyzed using the classical and commercially available finite element method. Hence, in this investigation, a Voronoi finite element method (VFEM) was developed to simulate the microstructure of bearing materials. The VFEM was then used to investigate the effects of microstructure randomness on rolling contact fatigue. Here two different types of randomness are considered: (i) randomness in the microstructure due to random shapes and sizes of the material grains, and (ii) the randomness in the material properties considering a normally (Gaussian) distributed elastic modulus. In this investigation, in order to determine the fatigue life, the model proposed by Raje et al. (“A Numerical Model for Life Scatter in Rolling Element Bearings,” ASME J. Tribol., 130, pp. 011011-1–011011-10), which is based on the Lundberg–Palmgren theory (“Dynamic Capacity of Rolling Bearings,” Acta Polytech. Scand., Mech. Eng. Ser., 1(3), pp. 7–53), is used. This model relates fatigue life to a critical stress quantity and its corresponding depth, but instead of explicitly assuming a Weibull distribution of fatigue lives, the life distribution is obtained as an outcome of numerical simulations. We consider the maximum range of orthogonal shear stress and the maximum shear stress as the critical stress quantities. Forty domains are considered to study the effects of microstructure on the fatigue life of bearings. It is observed that the Weibull slope calculated for the obtained fatigue lives is in good agreement with previous experimental studies and analytical results. Introduction of inhomogeneous elastic modulus and initial flaws within the material domain increases the average critical stresses and decreases the Weibull slope.


2010 ◽  
Vol 7 (2) ◽  
pp. 102543 ◽  
Author(s):  
R. H. Vegter ◽  
J. T. Slycke ◽  
John Beswick ◽  
S. W. Dean

2012 ◽  
Vol 503-504 ◽  
pp. 667-670
Author(s):  
Jing Ling Zhou ◽  
Wei Nan Zhu ◽  
Guo Qing Wu ◽  
Yu Song Ren

The RCF (Rolling Contact Fatigue) life of bearing balls is a main method, to evaluate the performance of bearing materials and their production technology. In general, The RCF life of ceramic balls is a reliable technique to asses whether or not they are suitable to be used in rolling bearings. The RCF life of ceramic balls is depend on contact stresses chiefly. It applies the finite element analysis to calculate the surface stresses and subsurface stresses, including 1st principal tensile stresses and shear stresses. The theory results are compared with the finite element solutions. Very good agreement is observed. The finite element results in this paper have an important applied value. The results provided theoretical basis for rolling contact fatigue life prediction of the ceramic balls.


2021 ◽  
pp. 445-496
Author(s):  
Pierre Dupont

Abstract This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Farshid Sadeghi ◽  
Behrooz Jalalahmadi ◽  
Trevor S. Slack ◽  
Nihar Raje ◽  
Nagaraj K. Arakere

Ball and rolling element bearings are perhaps the most widely used components in industrial machinery. They are used to support load and allow relative motion inherent in the mechanism to take place. Subsurface originated spalling has been recognized as one of the main modes of failure for rolling contact fatigue (RCF) of bearings. In the past few decades a significant number of investigators have attempted to determine the physical mechanisms involved in rolling contact fatigue of bearings and proposed models to predict their fatigue lives. In this paper, some of the most widely used RCF models are reviewed and discussed, and their limitations are addressed. The paper also presents the modeling approaches recently proposed by the authors to develop life models and better understanding of the RCF.


Sign in / Sign up

Export Citation Format

Share Document