Formability of Porous Tantalum Sheet-Metal

Author(s):  
Paul S. Nebosky ◽  
Steven R. Schmid

Over the past 10 years, a novel cellular solid, Trabecular MetalTM (TM), has been developed for use in the orthopedics industry as an ingrowth scaffold. Manufactured using chemical vapor deposition (CVD) on top of a graphite foam substrate, this material has a regular matrix of interconnecting pores, high strength, and high porosity. Manufacturing difficulties encourage the application of stamping and forming technologies to increase CVD reactor throughput and reduce materials wastes. In this study, the formability of TM was evaluated using a novel camera-based system for measuring surface strains, since the conventional approach of printing or etching gridded patterns was not feasible. A forming limit diagram was then obtained using specially fabricated 1.65 mm thick sheets. No lubricant was used due to the cleanliness requirements for orthopedic implants.

2012 ◽  
Vol 472-475 ◽  
pp. 653-656
Author(s):  
Jian Guang Liu ◽  
Qing Yuan Meng

Over the past decades, many kinds of double-sided pressure forming processes have been proposed to improve the formability of lightweight materials which exhibit distinctly poor forming capability. In the present study, the effects of double-sided pressure on the deformation behavior of AA5052-O aluminum alloy sheet metal under tension-compression deformation state are studied numerically using the finite element method based on the Gurson damage model. It is demonstrated that superimposed double-sided pressure significantly increases the left-side of the forming limit diagram and the formability increase value is sensitive to the strain path.


2010 ◽  
Vol 97-101 ◽  
pp. 420-425
Author(s):  
Wei Chen ◽  
S. Cheng ◽  
Y. Ding ◽  
Y.Q. Guo ◽  
L. Xue

The method for establishing the forming limit diagram (FLD) of multi-gauge high strength steel laser tailor-welded blanks (LTWB) is introduced based on analyzing the failure mechanism of multi-gauge LTWB. The Nakazima test is performed to generate the limit strain of multi-gauge high strength steel LTWB. By means of the ARGUS strain measuring system, the limit strain is measured and the FLD of LTWB is plotted subsequently. The FLD established by the Nakazima test is introduced into the FEA forming process as the failure criteria. Compared with the predicted result of the FLD of thinner metal, better correlation between the simulation and experimental results is indicated by adopting the FLD of LTWB as the necking criteria, which also reveals the validity and practicability of the FLD research method for multi-gauge high strength steel LTWB.


2011 ◽  
Vol 473 ◽  
pp. 390-395 ◽  
Author(s):  
Yann Jansen ◽  
Roland E. Logé ◽  
Marc Milesi ◽  
S. Manov ◽  
Elisabeth Massoni

. Formability of metal sheet has been widely studied for the past 40 years. This study leads to the well known Forming Limit Diagram (FLD) proposed by Keeler and Backhofen [1]. Such a diagram needs typical drawing and stretching experiments to be achieved. Lots of different metals have been considered as steel, aluminium, titanium or magnesium alloys [2]. Despite of the large amount of papers about sheet metal forming, few deal with Zinc sheets. The material has an anisotropic mechanical response due to its hexagonal crystallographic lattice and its microstructural texture. In the presented work, Nakazima and tensile tests have been performed for different mechanical orientations (0°, 45° and 90° angle to the rolling direction) in order to characterise this typical response. A high anisotropic behaviour has been noticed for the hardening and for the critical strains. The FLD is therefore a function of the orientation. Moreover thickness sensitivity is observed and leads to some criticisms about the plane stress assumption usually used in the FLD predictive models [3, 4]. The Modified Maximum Force Criterion (MMFC) is evaluated, and discussed. Then, this model is compared to a damage model used in [5] within an FEM formulation.


Author(s):  
S.P. Sundar Singh Sivam ◽  
L. Ganesh Babu ◽  
D. Kumaran

Designers of high pace advanced vehicles in aerospace industries particularly vehicle manufacturing types are placing more needs at the sheet metal forming enterprise by designing components from the high strength thermal resistance alloy. The principle goal of the observation is to test the mechanical, formability parameters and Erichsen cupping values of a sample of cold rolled closed annealed sheet. The quantity of strain that a metallic sheet can tolerate just before localized failure is called limit strain. The boundaries of formability in sheet metal operations are defined regarding the primary traces via the forming limit diagram (FLD). To be useful for engineering purposes, FLD needs to be simple enough so its parameters can be evaluated without difficulty ideally by way of uniaxial tests. The consequences confirmed that the formability of steel having decreased percentage of carbon is forming lesser. It changed into pressure distribution and the grain density of the sheet verifies the formability. The best grouping of strength and ductile properties are noted for metal with the low carbon and higher forming assets.


2014 ◽  
Vol 622-623 ◽  
pp. 257-264
Author(s):  
Sansot Panich ◽  
Vitoon Uthaisangsuk

In this study, experimental and numerical analyses of Forming Limit Diagram (FLD) for Advanced High Strength (AHS) steel grade 980 were performed. Forming limit curve was first determined by means of the Nakazima stretch-forming test. Then, analytical calculations of the FLD based on the Marciniak-Kuczynski (M-K) model were carried out. Different yield criteria, namely, Hill’48 (r-value and stress-based), Yld89 (r-value and stress-based) and Barlat2000 (Yld2000-2d) were investigated. The strain hardening law according to Swift was applied. To identify parameters of each model, uniaxial tension, balanced bi-axial bulge test and in-plane biaxial tension test were performed. As a result, predicted plastic flow stresses and plastic anisotropies of the AHS steel by various directions were evaluated. In addition, effects of the anisotropic yield functions, strain rate sensitivities, imperfection values and work hardening coefficient on the predicted FLD were studied and discussed. It was found that the FLD based on the Yld2000-2d yield criterion was in better agreement with the experimental curve. Accuracy of the FLD predictions based on the M-K theory, especially in the biaxial state of stress, significantly depended on the applied yield criteria, for which yield stresses and r-values of different loading directions were required.


2013 ◽  
Vol 51 ◽  
pp. 756-766 ◽  
Author(s):  
Sansot Panich ◽  
Frédéric Barlat ◽  
Vitoon Uthaisangsuk ◽  
Surasak Suranuntchai ◽  
Suwat Jirathearanat

Sign in / Sign up

Export Citation Format

Share Document