Theoretical and Experimental Evaluation of the Formability of Anisotropic Zinc Sheets

2011 ◽  
Vol 473 ◽  
pp. 390-395 ◽  
Author(s):  
Yann Jansen ◽  
Roland E. Logé ◽  
Marc Milesi ◽  
S. Manov ◽  
Elisabeth Massoni

. Formability of metal sheet has been widely studied for the past 40 years. This study leads to the well known Forming Limit Diagram (FLD) proposed by Keeler and Backhofen [1]. Such a diagram needs typical drawing and stretching experiments to be achieved. Lots of different metals have been considered as steel, aluminium, titanium or magnesium alloys [2]. Despite of the large amount of papers about sheet metal forming, few deal with Zinc sheets. The material has an anisotropic mechanical response due to its hexagonal crystallographic lattice and its microstructural texture. In the presented work, Nakazima and tensile tests have been performed for different mechanical orientations (0°, 45° and 90° angle to the rolling direction) in order to characterise this typical response. A high anisotropic behaviour has been noticed for the hardening and for the critical strains. The FLD is therefore a function of the orientation. Moreover thickness sensitivity is observed and leads to some criticisms about the plane stress assumption usually used in the FLD predictive models [3, 4]. The Modified Maximum Force Criterion (MMFC) is evaluated, and discussed. Then, this model is compared to a damage model used in [5] within an FEM formulation.

2012 ◽  
Vol 472-475 ◽  
pp. 653-656
Author(s):  
Jian Guang Liu ◽  
Qing Yuan Meng

Over the past decades, many kinds of double-sided pressure forming processes have been proposed to improve the formability of lightweight materials which exhibit distinctly poor forming capability. In the present study, the effects of double-sided pressure on the deformation behavior of AA5052-O aluminum alloy sheet metal under tension-compression deformation state are studied numerically using the finite element method based on the Gurson damage model. It is demonstrated that superimposed double-sided pressure significantly increases the left-side of the forming limit diagram and the formability increase value is sensitive to the strain path.


2009 ◽  
Vol 65 ◽  
pp. 19-31
Author(s):  
Ruben Cuamatzi-Melendez ◽  
J.R. Yates

Little work has been published concerning the transferability of Gurson’s ductile damage model parameters in specimens tested at different strain rates and in the rolling direction of a Grade A ship plate steel. In order to investigate the transferability of the damage model parameters of Gurson’s model, tensile specimens with different constraint level and impact Charpy specimens were simulated to investigate the effect of the strain rate on the damage model parameters of Gurson model. The simulations were performed with the finite element program ABAQUS Explicit [1]. ABAQUS Explicit is ideally suited for the solution of complex nonlinear dynamic and quasi–static problems [2], especially those involving impact and other highly discontinuous events. ABAQUS Explicit supports not only stress–displacement analyses but also fully coupled transient dynamic temperature, displacement, acoustic and coupled acoustic–structural analyses. This makes the program very suitable for modelling fracture initiation and propagation. In ABAQUS Explicit, the element deletion technique is provided, so the damaged or dead elements are removed from the analysis once the failure criterion is locally reached. This simulates crack growth through the microstructure. It was found that the variation of the strain rate affects slightly the value of the damage model parameters of Gurson model.


2018 ◽  
Vol 19 (2) ◽  
pp. 202 ◽  
Author(s):  
Rasoul Safdarian

Forming limit diagram (FLD) is one of the formability criteria which is a plot of major strain versus minor strain. In the present study, Gurson-Tvergaard-Needleman (GTN) model is used for FLD prediction of aluminum alloy 6061. Whereas correct selection of GTN parameters’ is effective in the accuracy of this model, anti-inference method and numerical simulation of the uniaxial tensile test is used for identification of GTN parameters. Proper parameters of GTN model is imported to the finite element analysis of Nakazima test for FLD prediction. Whereas FLD is dependent on forming history and strain path, forming limit stress diagram (FLSD) based on the GTN damage model is also used for forming limit prediction in the numerical method. Numerical results for FLD, FLSD and punch’s load-displacement are compared with experimental results. Results show that there is a good agreement between the numerical and experimental results. The main drawback of numerical results for prediction of the right-hand side of FLD which was concluded in other researchers’ studies was solved in the present study by using GTN damage model.


Author(s):  
B. Bal ◽  
K. K. Karaveli ◽  
B. Cetin ◽  
B. Gumus

Al 7068-T651 alloy is one of the recently developed materials used mostly in the defense industry due to its high strength, toughness, and low weight compared to steels. The aim of this study is to identify the Johnson–Cook (J–C) material model parameters, the accurate Johnson–Cook (J–C) damage parameters, D1, D2, and D3 of the Al 7068-T651 alloy for finite element analysis-based simulation techniques, together with other damage parameters, D4 and D5. In order to determine D1, D2, and D3, tensile tests were conducted on notched and smooth specimens at medium strain rate, 100 s−1, and tests were repeated seven times to ensure the consistency of the results both in the rolling direction and perpendicular to the rolling direction. To determine D4 and D5 further, tensile tests were conducted on specimens at high strain rate (102 s−1) and temperature (300 °C) by means of the Gleeble thermal–mechanical physical simulation system. The final areas of fractured specimens were calculated through optical microscopy. The effects of stress triaxiality factor, rolling direction, strain rate, and temperature on the mechanical properties of the Al 7068-T651 alloy were also investigated. Damage parameters were calculated via the Levenberg–Marquardt optimization method. From all the aforementioned experimental work, J–C material model parameters were determined. In this article, J–C damage model constants, based on maximum and minimum equivalent strain values, were also reported which can be utilized for the simulation of different applications.


Author(s):  
Mostafa Habibi ◽  
Ramin Hashemi ◽  
Ahmad Ghazanfari ◽  
Reza Naghdabadi ◽  
Ahmad Assempour

Forming limit diagram is often used as a criterion to predict necking initiation in sheet metal forming processes. In this study, the forming limit diagram was obtained through the inclusion of the Marciniak–Kaczynski model in the Nakazima out-of-plane test finite element model and also a flat model. The effect of bending on the forming limit diagram was investigated numerically and experimentally. Data required for this simulation were determined through a simple tension test in three directions. After comparing the results of the flat and Nakazima finite element models with the experimental results, the forming limit diagram computed by the Nakazima finite element model was more convenient with less than 10% at the lower level of the experimental forming limit diagram.


Author(s):  
Paul S. Nebosky ◽  
Steven R. Schmid

Over the past 10 years, a novel cellular solid, Trabecular MetalTM (TM), has been developed for use in the orthopedics industry as an ingrowth scaffold. Manufactured using chemical vapor deposition (CVD) on top of a graphite foam substrate, this material has a regular matrix of interconnecting pores, high strength, and high porosity. Manufacturing difficulties encourage the application of stamping and forming technologies to increase CVD reactor throughput and reduce materials wastes. In this study, the formability of TM was evaluated using a novel camera-based system for measuring surface strains, since the conventional approach of printing or etching gridded patterns was not feasible. A forming limit diagram was then obtained using specially fabricated 1.65 mm thick sheets. No lubricant was used due to the cleanliness requirements for orthopedic implants.


2005 ◽  
Vol 128 (3) ◽  
pp. 402-407 ◽  
Author(s):  
Bing Li ◽  
Don R. Metzger ◽  
Tim J. Nye

Tube hydroforming is an attractive manufacturing process in the automotive industry because it has several advantages over alternative methods. In order to determine the reliability of the process, a new method to assess the probability of failure is proposed in this paper. The method is based on the reliability theory and the forming limit diagram, which has been extensively used in metal forming as the criteria of formability. From the forming limit band in the forming limit diagram, the reliability of the forming process can be evaluated. A tube hydroforming process of free bulging is then introduced as an example to illustrate the approach. The results show this technique to be an innovative approach to avoid failure during tube hydroforming.


Sign in / Sign up

Export Citation Format

Share Document