Ratcheting Studies on Type 304LN Stainless Steel Elbows subjected to Combined Internal Pressure and In-Plane Bending Moment

2012 ◽  
Vol 134 (4) ◽  
Author(s):  
S. Vishnuvardhan ◽  
G. Raghava ◽  
P. Gandhi ◽  
M. Saravanan ◽  
D. M. Pukazhendhi ◽  
...  

“Ratcheting” is a phenomenon which leads to reduction in fatigue life of a structural component by loss of ductility due to cycle by cycle accumulation of plastic strain. Ratcheting occurs in a structure subjected to a combination of steady/sustained and cyclic loads such that the material response is in inelastic region. Ratcheting studies were carried out on Type 304LN stainless steel elbows, subjected to steady internal pressure and cyclic bending. The elbows filled with water were pressurized between 27.6 MPa and 39.2 MPa. Cyclic bending load, under opening and closing moments, was applied on the elbows at ambient temperature. Number of cycles corresponding to occurrence of a through-wall crack was recorded. Crack was observed in the bent portion at one of the crown locations in all the four specimens. Maximum strain was observed at the intrados and crown locations of the elbows. The ratcheting strain increased with number of cycles at crown and intrados locations. However, the strain accumulation rate decreased with number of cycles. Strain was observed to be minimum at the extrados location and the same stabilized toward the end of the tests. The specimens have failed by occurrence of through-wall axial crack accompanied by simultaneous ballooning. The ballooning was found to be varying from 3.8% to 5.8% with respect to the original circumference in the bent portion. The reduction in thickness was found to be around 12%–15%.

2019 ◽  
Vol 9 (23) ◽  
pp. 5025
Author(s):  
Yang ◽  
Dai ◽  
He

The ratcheting behavior of a steel pipe with assembly parts was examined under internal pressure and a cyclic bending load, which has not been seen in previous research. An experimentally validated and three dimensional (3D) elastic-plastic finite element model (FEM)—with a nonlinear isotropic/kinematic hardening model—was used for the pipe’s ratcheting simulation and considered the assembly contact effects outlined in this paper. A comparison of the ratcheting response of pipes with and without assembly parts showed that assembly contact between the sleeve and pipe suppressed the ratcheting response by changing its trend. In this work, the assembly contact effect on the ratcheting response of the pipe with assembly parts is discussed. Both the assembly contact and bending moment were found to control the ratcheting response, and the valley and peak values of the hoop ratcheting strain were the transition points of the two control modes. Finally, while the clearance between the sleeve and the pipe had an effect on the ratcheting response when it was not large, it had no effect when it reached a certain value.


Author(s):  
Ali Salehi ◽  
Armin Rahmatfam ◽  
Mohammad Zehsaz

The present study aimed to study ratcheting strains of corroded stainless steel 304LN elbow pipes subjected to internal pressure and cyclic bending moment. To this aim, spherical and cubical shapes corrosion are applied at two depths of 1 mm and 2 mm in the critical points of elbow pipe such as symmetry sites at intrados, extrados, and crown positions. Then, a Duplex 2205 stainless steel elbow pipe is considered as an alternative to studying the impact of the pipe materials, due to its high corrosion resistance and strength, toughness, and most importantly, the high fatigue strength and other mechanical properties than stainless steel 304LN. In order to perform numerical analyzes, the hardening coefficients of the materials were calculated. The results highlight a significant relationship between the destructive effects of corrosion and the depth and shape of corrosion, so that as corrosion increases, the resulting destructive effects increases as well, also, the ratcheting strains in cubic corrosions have a higher growth rate than spherical corrosions. In addition, the growth rate of the ratcheting strains in the hoop direction is much higher across the studied sample than the axial direction. The highest growth rate of hoop strain was observed at crown and the highest growth rate of axial strains occurred at intrados position. Altogether, Duplex 2205 material has a better performance than SS 304LN.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Gongfeng Jiang ◽  
Gang Chen ◽  
Liang Sun ◽  
Yiliang Zhang ◽  
Xiaoliang Jia ◽  
...  

Experimental results of uniaxial ratcheting tests for stainless steel 304 (SS304) under stress-controlled condition at room temperature showed that the elastic domain defined in this paper expands with accumulation of plastic strain. Both ratcheting strain and viscoplastic strain rates reduce with the increase of elastic domain, and the total strain will be saturated finally. If the saturated strain and corresponded peak stress of different experimental results under the stress ratio R ≥ 0 are plotted, a curve demonstrating the material shakedown states of SS304 can be constituted. Using this curve, the accumulated strain in a pressure vessel subjected to cyclic internal pressure can be determined by only an elastic-plastic analysis, and without the cycle-by-cycle analysis. Meanwhile, a physical experiment of a thin-walled pressure vessel subjected to cyclic internal pressure has been carried out to verify the feasibility and effectiveness of this noncyclic method. By comparison, the accumulated strains evaluated by the noncyclic method agreed well with those obtained from the experiments. The noncyclic method is simpler and more practical than the cycle-by-cycle method for engineering design.


2013 ◽  
Vol 573 ◽  
pp. 69-75 ◽  
Author(s):  
Xiao Hui Chen ◽  
Duo Min Li ◽  
Jian Bei Zhu ◽  
Xu Chen

A series of ratcheting experiments and finite element analysis simulation under bending loading for Z2CND18.12N stainless steel elbows were carried out. Chaboche and modified Ohno-Wang model are applied to evaluate structural ratcheting response simulations. It is found that ratcheting strain initiates firstly in the hoop direction and increases in the axial direction with the increasing of loading. The Ratcheting strain rate grows with the increase of the reversed in-plane bending load or internal pressure for both specimens with different loadings. Comparison of simulation and experiment showed that modified Ohno-Wang model presented simulation more reasonably.


Author(s):  
Satoshi Nagata ◽  
Shinichi Fujita ◽  
Toshiyuki Sawa

Abstract This paper is a report of the studies on the mechanical behaviors and leakage characteristics of pipe-socket threaded joints subjected to bending moment as well as internal pressure by means of experimental tests and finite element simulations. The paper dealt with the 3/4″ and 3″ joints, and the joints for both sizes have two different combinations of thread types in the pipe and socket, i.e. taper-taper thread combination or taper-parallel one, respectively. Experimental bending leak tests showed that the taper-taper joints could retain internal pressure under bending load up to nearly plastic collapse. The taper-parallel joints, however, could hardly keep internal pressure against bending moment even the sealing tape was applied to enhance the sealing performance. Finite element analysis was carried out to simulate those bending tests, especially to clarify the deformation and the stress distribution in the engaged threads in detail. The analysis demonstrated that the sealing performance of the joints highly depend on the contact conditions not only at the thread crest to thread root but also in between flank surfaces. A complicated leak path across the engaged threads under bending moment was identified by the simulation.


Author(s):  
Marina Q. Smith ◽  
Christopher J. Waldhart

Current methods for estimating the remaining strength of aging, corroded pipelines have been restricted to the capabilities of pressure based engineering models that rely on the definition of hoop stress in the pipe wall. Because in practice, pipelines are subjected to a variety of loading conditions (e.g.; axial bending from settlement and thermal stresses) that act in concert with those derived by internal pressure, a multi-year combined testing and analysis program was initiated by the Alyeska Pipeline Service Company aimed at developing computer tools for the prediction of rupture and wrinkling in corroded pipes. During the program, seventeen full-scale tests of mechanically corroded 48-inch diameter (1219-mm), X65 pipes subjected to internal pressure, axial bending, and axial compression were performed to provide data necessary for the verification of analytical models and failure prediction models. While all of the tests were designed to produce rupture, wrinkling, as defined by the occurrence of a limit moment during the application of bending loads, was produced in eleven of the tests either prior to or instead of rupture. Loading of the pipe was intended to simulate that which would be observed by a pipe in-service and included both load control and displacement control of the applied bending load, and in some tests, intended to define the amount of additional pressure required to cause burst after wrinkling was produced. Results of the tests showed that two different failure modes are produced depending on whether the bending moment is transmitted to the pipe as a fixed load or a fixed displacement, and consequently, the burst capacity of the corroded pipe may not be compromised by the presence of axial loads. This paper discusses the tests performed, including a description of the load schedule and corrosion geometries, and key results of the tests that were used in the development of a new strain-based burst prediction procedure for corroded pipes subjected to combined loads.


Author(s):  
Lui´s F. S. Parise ◽  
Claudio Ruggieri

This work provides an estimation procedure to determine the J-integral and CTOD for pipes with circumferential surface cracks subjected to combined bending load and internal pressure for a wide range of crack geometries and material (hardening) based upon fully-plastic solutions. The present investigation broadens the applicability of current evaluation procedures for J and CTOD which enter directly into structural integrity analyses and flaw tolerance criteria. Extensive 3-D nonlinear analyses of circumferentially cracked pipes with surface flaws having different crack depth (a) over pipe wall thickness (t) ratios and varying crack length for different strain hardening properties provide the dimensionless parameters relating the elastic-plastic crack-tip driving forces with the applied (remote) bending moment and internal pressure. The investigation provides a fairly comprehensive body of numerical solutions for J and CTOD in circumferentially cracked pipes subjected to biaxial loading.


2005 ◽  
Vol 128 (4) ◽  
pp. 525-532 ◽  
Author(s):  
Xu Chen ◽  
Bingjun Gao ◽  
Gang Chen

With a multi-axial test machine, ratcheting was studied experimentally for pressurized low carbon steel elbows under reversed bending. The maximum ratcheting strain occurred mainly in the hoop direction at flanks. Hoop ratcheting strain was found at intrados for individual specimen. No ratcheting strain was found at the extrados for all tests. Ratcheting strain rate grew with increase of the bending loading level at the same internal pressure or with an increase of internal pressure at the same bending load. Ratcheting simulation was performed by EPFEA with ANSYS in which Ohno-Wang and Chen-Jiao-Kim kinematic hardening rules were applied by user programing. By comparing with the experimental data, it is found that predicted results by the Chen-Jiao-Kim model simulates reasonably. Ratcheting boundary was determined by C-TDF method with the Chen-Jiao-Kim model.


2010 ◽  
Vol 118-120 ◽  
pp. 131-135 ◽  
Author(s):  
Ting Liang ◽  
Gang Chen ◽  
Qi Zhang ◽  
Xu Chen

The ratcheting strains of the straight and elbow piping under two kinds of loads—pressurized piping under symmetric cyclic bending and pulsating cyclic pressure were analyzed based on Chaboche constitutive model. The locations of the maximum ratcheting strain were determined. The ratcheting boundaries of the two piping structures under two kinds of loads were compared and calculated by the C-TDF method. For the pressurized piping under symmetric cyclic bending, the allowable bending load increases from E90S to E90L under the same pressure. In the higher cyclic pressure range, the allowable pressure have little difference under the same bending load which indicates that the bend moment have a bit effects on the ratcheting boundary in the higher cyclic pressure range.


Sign in / Sign up

Export Citation Format

Share Document