FEM Stress Analysis and Leakage Behavior of Pipe-Socket Threaded Joints Subjected to Bending Moment and Internal Pressure

Author(s):  
Satoshi Nagata ◽  
Shinichi Fujita ◽  
Toshiyuki Sawa

Abstract This paper is a report of the studies on the mechanical behaviors and leakage characteristics of pipe-socket threaded joints subjected to bending moment as well as internal pressure by means of experimental tests and finite element simulations. The paper dealt with the 3/4″ and 3″ joints, and the joints for both sizes have two different combinations of thread types in the pipe and socket, i.e. taper-taper thread combination or taper-parallel one, respectively. Experimental bending leak tests showed that the taper-taper joints could retain internal pressure under bending load up to nearly plastic collapse. The taper-parallel joints, however, could hardly keep internal pressure against bending moment even the sealing tape was applied to enhance the sealing performance. Finite element analysis was carried out to simulate those bending tests, especially to clarify the deformation and the stress distribution in the engaged threads in detail. The analysis demonstrated that the sealing performance of the joints highly depend on the contact conditions not only at the thread crest to thread root but also in between flank surfaces. A complicated leak path across the engaged threads under bending moment was identified by the simulation.

Author(s):  
Satoshi Nagata ◽  
Toshiyuki Sawa ◽  
Takashi Kobayashi ◽  
Hirokazu Tsuji

This paper reports the results of finite element analysis representing the sealing performance tests on the slip-on type pipe flange connections for 8 inch and 16 inch. The flange connections are subjected to internal pressure and bending moment. Internal pressure is applied by helium gas and the bending moment is loaded through 4 points bending equipment. Gas leak rates are measured by pressure decay method. During the test, the variations in the axial bolt force are monitored for all the bolts by strain gages. The pipe stress at the junction of pipe and flange is also measured. Finite element analysis simulates the tests and the simulated results are compared with the measured data. Then the behaviors of the slip-on type flange connections under internal pressure and bending moment as well as the sealing performance are clarified by the experiment and the finite element simulation.


Author(s):  
N. Rino Nelson ◽  
N. Siva Prasad ◽  
A. S. Sekhar

Gasketed flange joint is a vital component in pressure vessels and piping systems. Flange joint is usually subjected to bending load due to expansion, wind load, self-weight, etc. Most of the flange design methods use equivalent pressure to include the effect of external bending loads. It becomes complex when the joint is subjected to bending load at elevated temperatures, due to the nonlinear behavior of gasket material. In the present work, performance of the flange joint has been studied under external bending load at elevated temperatures. A 3D finite element model is developed, considering the nonlinearities in the joint due to gasket material and contact between its members along with their temperature dependent material properties. The performance of the joint under different bolt preloads, internal fluid pressures and temperatures is studied. Flange joint with two gaskets (twin gasketed joint) placed beside each other radially, is also analyzed under external bending moment. The maximum allowable bending moments at different internal temperatures, for single and twin gasketed joints with spiral wound gasket are arrived.


Author(s):  
S Sumesh ◽  
AR Veerappan ◽  
S Shanmugam

Throughwall circumferential cracks (TWC) in elbows can considerably minimize its collapse load when subjected to in-plane bending moment. The existing closed-form collapse moment equations do not adequately quantify critical crack angles for structurally distorted cracked pipe bends subjected to external loading. Therefore, the present study has been conducted to examine utilizing elastic-plastic finite element analysis, the influence of structural distortions on the variation of critical TWC of 90° pipe bends under in-plane closing bending moment without and with internal pressure. With a mean radius ( r) of 50 mm, cracked pipe bends were modeled for three different wall thickness, t (for pipe ratios of r/ t = 5,10,20), each with two different bend radius, R (for bend ratios of R/r = 2,3) and with varying degrees of ovality and thinning (0 to 20% with increments of 5%). Finite element analyses were performed for two loading cases namely pure in-plane closing moment and in-plane closing bending with internal pressure. Normalized internal pressures of 0.2, 0.4, and 0.6 were applied. Results indicate the modification in the critical crack angle due to the pronounced effect of ovality compared to thinning on the plastic loads of pipe bends. From the finite element results, improved closed-form equations are proposed to evaluate plastic collapse moment of throughwall circumferential cracked pipe bends under the two loading conditions.


Author(s):  
Václav Sebera ◽  
Milan Šimek

The objective of the paper is the parametrization and the finite element analysis of mechanical pro­per­ties of a through dovetail joint made with the use of a specific procedure by a 3-axis CNC machine. This corner joint was used for the simulation of the bending load of the joint in the angle plane – by compression, i.e. by pressing the joint together. The deformation fields, the stress distribution, the stiffness and the bending moment of the joints were evaluated. The finite element system ANSYS was used to create two parametric numerical models of the joint. The first one represents an ideal­ly stiff joint – both joint parts have been glued together. The second model includes the contact between the joined parts. This numerical model was used to monitor the response of the joint stiffness to the change of the static friction coefficient. The results of both models were compared both with each other and with similar analyses conducted within the research into ready-to-assemble furniture joints. The results can be employed in the designing of more complex furniture products with higher demands concerning stiffness characteristics, such as furniture for sitting. However, this assumption depends on the correction of the created parametric models by experimental testing.


Author(s):  
Celal Cakiroglu ◽  
Amin Komeili ◽  
Samer Adeeb ◽  
J. J. Roger Cheng ◽  
Millan Sen

The cold bend pipelines may be affected by the geotechnical movements due to unstable slopes, soil type and seismic activities. An extensive experimental study was conducted by Sen et al. in 2006 to understand the buckling behaviour of cold bend pipes. In their experiments, it was noted that one high pressure X65 pipe specimen failed under axial and bending loads due to pipe body tensile side fracture which occurred after the development of a wrinkle. The behaviour of this cold bend pipe specimen under bending load has been investigated numerically to understand the conditions leading to pipe body tension side fracture following the compression side buckling. Bending load has been applied on a finite element model of the cold bend by increasing the curvature of it according to the experimental studies conducted by Sen [1]. The bending loads have been applied on the model with and without internal pressure. The distribution of the plastic strains and von Mises stresses as well as the load–displacement response of the pipe have been compared for both load cases. In this way the experimental results obtained by Sen [1] have been verified. The visualization of the finite element analysis results showed that pipe body failure at the tension side of the cold bend takes place under equal bending loads only in case of combined loading with internal pressure.


Author(s):  
Mitsutoshi Ishimura ◽  
Masahide Katsuo ◽  
Toshiyuki Sawa ◽  
Masamichi Serizawa

In practice, PTFE tape is being used for sealing of a pipe fitting. However, the efficiency, the decrease in work time, and the sealing performance can be improved by using adhesive instead of the tape. When such a pipe fitting is under an internal pressure and external bending moment by an internal fluid and others, however, an influence in the sealing performance is taken by how to use an adhesion. This study deals with the stress analysis and the evaluation of the sealing performance of the pipe fitting with an adhesive under an internal pressure and an external bending moment analyzed by using the 3-dimensional elastic finite element method. Furthermore, the experiment of the leakage test of the pipe fitting with an adhesive was carried out when the above loads were applied to the pipe fitting. From 3-D FEM analysis, the following results were obtained: (1) the stress distribution at the interface between thread and adhesive on the side of the internal pressure is tensile stress, and stress on the opposite side is compressive, (2) the stresses at the area of the clearance between the valley of the screw and the mountain increase as the numbers of turns of the thread in fittings increase, and (3) the compressive stress at the side of the tensile part in the fittings decrease as the external bending moments increase. However, the sealing performance will not change when the bending moment is not so great because the compressive stress at the side of the compressive part in the fitting increases. From the leakage tests, the following results of the sealing performance were obtained: (1) the sealing performance of a fittings with adhesive under an internal pressure and a bending moment didn’t decrease when bending moment was not so great, and (2) when it exceeds fixed pressure, rapid leakage from the fitting with adhesive occurred by the exfoliation of the adhesive. Furthermore, the numerical results are in fairly good agreement with the experimental results.


2000 ◽  
Vol 122 (4) ◽  
pp. 431-436 ◽  
Author(s):  
J. Chattopadhyay ◽  
D. K. Nathani ◽  
B. K. Dutta ◽  
H. S. Kushwaha

Elastic-plastic finite element analysis has been carried out to evaluate collapse moments of six elbows with elbow factors varying from 0.24 to 0.6. The loading conditions of combined in-plane closing/opening bending moment and varying degree of internal pressure are considered in the analysis. For each case, collapse moment is obtained by twice elastic slope method from the moment versus end-rotation curve. Based on these results, two closed-form equations are proposed to evaluate the collapse moments of elbows under combined internal pressure and in-plane closing and opening bending moment. [S0094-9930(00)00103-7]


2006 ◽  
Vol 306-308 ◽  
pp. 351-356 ◽  
Author(s):  
Asnawi Lubis ◽  
Jamiatul Akmal

The behavior of piping elbows under bending and internal pressure is more complicated than expected. The main problem is that the coupling of bending and internal pressure is nonlinear; the resulting stress and displacement cannot be added according to the principle of superposition. In addition, internal pressure tends to act against the effect caused by the bending moment. If bending moment ovalise the elbow cross-section, with internal pressure acting against this deformation, then the ovalised cross section deform back to the original circular shape. It is then introduced the term “pressure reduction effect”, or in some literature, “pressure stiffening effect”. Current design piping code treats the pressure reduction effect equally for in-plane (closing and opening) moment and outof- plane moment. The aim of this paper is to present results of a detailed finite element analysis on the non-linear behavior of piping elbows of various geometric configurations subject to out-of-plane bending and internal pressure. Specifically the standard Rodabaugh & George nonlinear pressure reduction equations for in-plane closing moment are checked in a systematic study for out-of-plane moment against nonlinear finite element analysis. The results show that the pressure stiffening effects are markedly different for in-plane and out-of-plane bending.


Author(s):  
Muhammad Abid ◽  
Niaz B Khan

Optimized performance of joint is categorized by its “structural integrity” and “sealing capability”. In literature, limited data are available regarding the performance of gasketed bolted flanged joint under combined internal and external loading; hence an optimized joint performance cannot be addressed. In this paper, a detailed three-dimensional nonlinear finite element analysis of bolted gasketed flange joint is performed, to study its performance under combined internal (pressure) and external (axial and bending) load. Results of the finite element analysis are compared with the experimental results available in literature providing the validation of the numerical approach developed.


Sign in / Sign up

Export Citation Format

Share Document