Study of Small Scale Effects on the Nonlinear Vibration Response of Functionally Graded Timoshenko Microbeams Based on the Strain Gradient Theory

Author(s):  
R. Ansari ◽  
R. Gholami ◽  
S. Sahmani

In the current study, the nonlinear free vibration behavior of microbeams made of functionally graded materials (FGMs) is investigated based on the strain gradient elasticity theory and von Karman geometric nonlinearity. The nonclassical beam model is developed in the context of the Timoshenko beam theory which contains material length scale parameters to take the size effect into account. The model can reduce to the beam models based on the modified couple stress theory (MCST) and the classical beam theory (CBT) if two or all material length scale parameters are taken to be zero, respectively. The power low function is considered to describe the volume fraction of the ceramic and metal phases of the FGM microbeams. On the basis of Hamilton’s principle, the higher-order governing differential equations are obtained which are discretized along with different boundary conditions using the generalized differential quadrature method. The dimensionless linear and nonlinear frequencies of microbeams with various values of material property gradient index are calculated and compared with those obtained based on the MCST and an excellent agreement is found. Moreover, comparisons between the various beam models on the basis of linear and nonlinear types of strain gradient theory (SGT) and MCST are presented and it is observed that the difference between the frequencies obtained by the SGT and MCST is more significant for lower values of dimensionless length scale parameter.

2000 ◽  
Vol 67 (4) ◽  
pp. 803-812 ◽  
Author(s):  
S. Hao ◽  
W. K. Liu ◽  
D. Qian

A localization-induced cohesive model has been proposed for shear band evolution, crack growth, and fracture. Strain gradient theory has been applied to establish the criterion of the onset of localization and the governing equation in the post-bifurcation stage. Analytical solutions in one-dimensional case are used to establish the “traction-separation” law, in which strain gradient and material intrinsic length scale present strong effects. In addition, the solution predicts a finite width for the localization-induced band. It is observed that a larger length scale contributes to the growth of a larger width of localization region and separation for softening materials. The proposed model provides a procedure to establish the fracture toughness analytically since the material length scale is taken into account. From the traction-separation analysis, it is found that damage decreases separation, whereas an increase in material length scale increases the opening displacement; however, the traction-normalized opening displacement curves (with respect to the material length scale) are identical. Based on the methodology of multiple scale analysis in meshfree method, a computational approach has been proposed to enrich the one-dimensional traction-separation law to define fracture. [S0021-8936(00)01104-1]


2017 ◽  
Vol 21 (4) ◽  
pp. 1243-1270 ◽  
Author(s):  
Mohammad Arefi ◽  
Ashraf M Zenkour

In this study, the strain gradient theory is employed to derive governing equations of motion of a functionally graded Timoshenko’s sandwich microbeam resting on Pasternak’s foundation. The microbeam is including a micro-core and two piezoelectric face-sheets on top and bottom. The plate is actuated with applied electric potential at top of piezoelectric face-sheets. The governing equations of motion are derived using Hamilton’s principle and strain gradient theory. After derivation of governing equations of motion, the problem is solved for three classes of analysis including wave propagation, free vibration and bending analysis. The numerical results are presented to reflect the effect of important parameters such as wave number, applied voltage, inhomogeneous index, parameters of foundation and material length-scale parameters on the different responses. The obtained results indicated that changing material length-scale parameters leads to a stiffer structure that increase natural frequencies and decreases transverse deflection and maximum electric potential.


2020 ◽  
Vol 20 (08) ◽  
pp. 2050088 ◽  
Author(s):  
J. P. Shen ◽  
P. Y. Wang ◽  
W. T. Gan ◽  
C. Li

Considering both the nonlocal scale and material length scale effects, we investigate vibration and stability behaviors of functionally graded nanoplates with axial motion in order to model the two-dimensional nanobelt in nanoengineering. The nonlocal strain gradient theory is applied and the differential nonlocal strain gradient constitutive relation is adopted. Using the physical neutral plane of a functionally graded thin plate, we derive the governing equation of motion for the functionally graded nanoplate with axial motion via Hamilton’s principle, where the kinematic characteristics are introduced into the dynamic behaviors. The governing equation is numerically solved using the Galerkin method. Effects of the nonlocal scale and material length scale parameters, axial velocity, gradient index, biaxial pre-tensions and aspect ratio are discussed. The results demonstrate that complex frequencies of the functionally graded nanoplate with axial motion decrease with an increase of axial velocity in the subcritical region, while the moving nanoplate experiences a divergent instability or flutter instability in the supercritical region. Natural frequency and critical speed decrease with the increase of the nonlocal scale parameter while increase with the increase of the material length scale parameter, reflecting the nonlocal softening and strain gradient hardening mechanisms, respectively. Besides, natural frequency and critical speed increase with the increase of the biaxial pre-tensions and aspect ratio, but decrease with the increase of the gradient index. In particular, the influences of the gradient index and size or weight of functionally graded nanoplates on the critical speed are explored.


Author(s):  
S. A. Tajalli ◽  
M. H. Kahrobaiyan ◽  
M. Rahaeifard ◽  
M. T. Ahmadian ◽  
M. R. Movahhedy ◽  
...  

In this paper, a size-dependent formulation is developed for Timoshenko beams made of functionally graded materials (FGM). The developed formulation is based on the strain gradient theory; a non-classical continuum theory able to capture the size-effect in micro-scaled structures. Considering the material length scale parameters of the FG beams vary through the thickness, the new equivalent length scale parameters are proposed as functions of the constituents’ length scale parameters to describe the size-dependent static and dynamic behavior of FG microbeams. The governing differential equations of equilibrium and both classical and non-classical sets of boundary conditions are derived for the proposed strain gradient FG Timoshenko beam using variational approach. As case studies, the static bending deformation of the new model is investigated for an FG simply supported beam made of tungsten/copper (W/Cu) in which properties are varying through the thickness according to a power law. The results of the new model are compared to those of the modified couple stress and the classical theories where the two latter theories are special cases of the strain gradient theory.


Author(s):  
Bo Zhou ◽  
Zetian Kang ◽  
Xiao Ma ◽  
Shifeng Xue

This paper focuses on the size-dependent behaviors of functionally graded shape memory alloy (FG-SMA) microbeams based on the Bernoulli-Euler beam theory. It is taken into consideration that material properties, such as austenitic elastic modulus, martensitic elastic modulus and critical transformation stresses vary continuously along the longitudinal direction. According to the simplified linear shape memory alloy (SMA) constitutive equations and nonlocal strain gradient theory, the mechanical model was established via the principle of virtual work. Employing the Galerkin method, the governing differential equations were numerically solved. The functionally graded effect, nonlocal effect and size effect of the mechanical behaviors of the FG-SMA microbeam were numerically simulated and discussed. Results indicate that the mechanical behaviors of FG-SMA microbeams are distinctly size-dependent only when the ratio of material length scale parameter to the microbeam height is small enough. Both the increments of material nonlocal parameter and ratio of material length-scale parameter to the microbeam height all make the FG-SMA microbeam become softer. However, the stiffness increases with the increment of FG parameter. The FG parameter plays an important role in controlling the transverse deformation of the FG-SMA microbeam. This work can provide a theoretical basis for the design and application of FG-SMA microstructures.


2019 ◽  
Vol 40 (12) ◽  
pp. 1695-1722 ◽  
Author(s):  
Lu Lu ◽  
Li Zhu ◽  
Xingming Guo ◽  
Jianzhong Zhao ◽  
Guanzhong Liu

AbstractIn this paper, a novel size-dependent functionally graded (FG) cylindrical shell model is developed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory. The new model containing a nonlocal parameter, a material length scale parameter, and several surface elastic constants can capture three typical types of size effects simultaneously, which are the nonlocal stress effect, the strain gradient effect, and the surface energy effects. With the help of Hamilton’s principle and first-order shear deformation theory, the non-classical governing equations and related boundary conditions are derived. By using the proposed model, the free vibration problem of FG cylindrical nanoshells with material properties varying continuously through the thickness according to a power-law distribution is analytically solved, and the closed-form solutions for natural frequencies under various boundary conditions are obtained. After verifying the reliability of the proposed model and analytical method by comparing the degenerated results with those available in the literature, the influences of nonlocal parameter, material length scale parameter, power-law index, radius-to-thickness ratio, length-to-radius ratio, and surface effects on the vibration characteristic of functionally graded cylindrical nanoshells are examined in detail.


2014 ◽  
Vol 06 (05) ◽  
pp. 1450055 ◽  
Author(s):  
HAMID M. SEDIGHI ◽  
A. KOOCHI ◽  
M. ABADYAN

It is well-established that mechanical behavior of nanoscale systems is size dependent. In this paper, strain gradient elasticity theory is used for mathematical modeling of size dependent electromechanical instability of cantilever nanoactuator. The nanoactuator is modeled using Euler–Bernoulli beam theory and equation of motion is derived using Hamilton's principle. In order to solve the nonlinear governing equation, reduced order method (ROM) is employed. The dynamic pull-in instability of the nanoactuator is investigated through plotting the time history and phase portrait of the system. Static and dynamic pull-in voltage of nanoactuator as a function of dimensionless length scale parameters is determined. The obtained results show that when thickness of the nanoactuator is comparable with the intrinsic material length scales, size effect can substantially influence the pull-in behavior of the system.


2018 ◽  
Vol 10 (08) ◽  
pp. 1850088 ◽  
Author(s):  
Zhu Su ◽  
Guoyong Jin ◽  
Lifeng Wang ◽  
Dan Wang

A unified formulation for thermo-mechanical vibration analysis of size-dependent Timoshenko micro-beams comprised of functionally graded materials (FGMs) with general restraints is presented. The size effect is considered by incorporating the modified strain gradient theory into Timoshenko beam theory. The thermal and mechanical properties of FGMs are related to temperature and are assumed as continuous variation along the thickness. The Mori–Tanaka estimate is used for calculation of the material properties of FGM micro-beam. The formulation is deduced on the basis of the variational principle combined with penalty function method. The displacements and rotation of the FGM micro-beam are uniformly expanded by a modified Fourier series composed of traditional cosine series and some appropriate supplementary functions. Several comparisons of the present solutions with those from existing literature confirm the validity of the current formulation. In addition, a parametric study is given to demonstrate the influence of length scale parameters, gradient indices, end restraints and temperature changes on vibration characteristic of functionally graded micro-beam.


Sign in / Sign up

Export Citation Format

Share Document