Analytical modeling of the linear and nonlinear dynamic characteristics of the non-uniform axially functionally graded cylindrical beam based on the strain gradient theory

Author(s):  
Yuanyuan Zhao ◽  
Yufang Zhu ◽  
Jun Song
Author(s):  
R. Ansari ◽  
R. Gholami ◽  
S. Sahmani

In the current study, the nonlinear free vibration behavior of microbeams made of functionally graded materials (FGMs) is investigated based on the strain gradient elasticity theory and von Karman geometric nonlinearity. The nonclassical beam model is developed in the context of the Timoshenko beam theory which contains material length scale parameters to take the size effect into account. The model can reduce to the beam models based on the modified couple stress theory (MCST) and the classical beam theory (CBT) if two or all material length scale parameters are taken to be zero, respectively. The power low function is considered to describe the volume fraction of the ceramic and metal phases of the FGM microbeams. On the basis of Hamilton’s principle, the higher-order governing differential equations are obtained which are discretized along with different boundary conditions using the generalized differential quadrature method. The dimensionless linear and nonlinear frequencies of microbeams with various values of material property gradient index are calculated and compared with those obtained based on the MCST and an excellent agreement is found. Moreover, comparisons between the various beam models on the basis of linear and nonlinear types of strain gradient theory (SGT) and MCST are presented and it is observed that the difference between the frequencies obtained by the SGT and MCST is more significant for lower values of dimensionless length scale parameter.


2020 ◽  
Vol 31 (12) ◽  
pp. 1511-1523
Author(s):  
Mohammad Mahinzare ◽  
Hossein Akhavan ◽  
Majid Ghadiri

In this article, a first-order shear deformable model is expanded based on the nonlocal strain gradient theory to vibration analysis of smart nanostructures under different boundary conditions. The governing equations of motion of rotating magneto-viscoelastic functionally graded cylindrical nanoshell in the magnetic field and corresponding boundary conditions are obtained using Hamilton’s principle. To discretize the equations of motion, the generalized differential quadrature method is applied. The aim of this work is to investigate the effects of the temperature changes, nonlocal parameter, material length scale, viscoelastic coefficient, various boundary conditions, and the rotational speed of this smart structure on natural frequencies of rotating cylindrical nanoshell made of magneto-viscoelastic functionally graded material.


2018 ◽  
Vol 35 (4) ◽  
pp. 441-454 ◽  
Author(s):  
M. Shishesaz ◽  
M. Hosseini

ABSTRACTIn this paper, the mechanical behavior of a functionally graded nano-cylinder under a radial pressure is investigated. Strain gradient theory is used to include the small scale effects in this analysis. The variations in material properties along the thickness direction are included based on three different models. Due to slight variations in engineering materials, the Poisson’s ratio is assumed to be constant. The governing equation and its corresponding boundary conditions are obtained using Hamilton’s principle. Due to the complexity of the governed system of differential equations, numerical methods are employed to achieve a solution. The analysis is general and can be reduced to classical elasticity if the material length scale parameters are taken to be zero. The effect of material indexn, variations in material properties and the applied internal and external pressures on the total and high-order stresses, are well examined. For the cases in which the applied external pressure at the inside (or outside) radius is zero, due to small effects in nano-cylinder, some components of the high-order radial stresses do not vanish at the boundaries. Based on the results, the material inhomogeneity indexn, as well as the selected model through which the mechanical properties may vary along the thickness, have significant effects on the radial and circumferential stresses.


Sign in / Sign up

Export Citation Format

Share Document